The Bone & Joint Journal

Supplementary Material

10.1302/0301-620X.107B3.BJJ-2024-1220.R1

 Table i. Description of predictors.

Predictor	Description	Categorization
Age	Estimated in years, using date of birth from the	Continuous
	personal identifier and date of surgical admission	
Sex	Male or female	Binary
Height	Based on self-reported height, in cm	Continuous
Weight	Based on self-reported weight, in kg	Continuous
BMI	Based on self-reported height and weight, in kg/m2	Continuous
Symptom duration	Self-reported duration of symptom, including back	Continuous
	pain, leg pain, or numbness, etc., in month	
CCI	Charlson Comorbidity Index, ¹ measured by the	Continuous
	surgeon	
Osteoporosis	Defined as T-score \leq -2.5 according to Dual-energy x-	Binary
	ray absorptiometry scans, ² categorized as yes or no	
Frailty	Measured by the surgeon, based on the frailty	Binary
	phenotype proposed by Fried et al, ³ categorized as	
	frail or normal/pre-frail	
Malnutrition	Measured by the surgeon, based on the mini-	Binary
	nutritional assessment scale, ⁴ categorized as normal	
	or malnutrition	
Anxiety	Measured by the surgeon, based on the Zung Scale, ⁵	Binary
Depression	categorized as yes or no	Binary
Currently smoker	Non-smoker or current smoker	Binary
rTCSA	Relative total/functional cross-sectional area of	Continuous
rFCSA	paraspinal muscles, ⁶ measured by the surgeon, take	Continuous
	the average of each lumbar segments	

IVDD severity	Measured by the surgeon, based on the modified	Continuous
	Pfirrmann grading system, ⁷ take the average of each	
	lumbar segments	
FPC	Measured by the surgeon, based on the criteria	Binary
	proposed by Wang and colleagues, ⁶ categorized as	
	yes or no.	
Surgical levels	Number of surgical levels operated on (range 4 to 15)	Continuous
UIV location	The location of upper instrumented vertebra, recorded	Binary
	by the surgeon, categorized as upper thoracic region	
	or lower thoracic/thoracolumbar region	
Injection of cement at	Recorded by the surgeon, categorized as yes or no	Binary
UIV+1		
Operating time	Based on the electronic surgical record, in mins	Continuous
EBL	Based on the electronic surgical record, in ml	Continuous
Intraoperative	Based on the electronic surgical record, in ml	Continuous
transfusion		
TK (pre- and	Cobb angle between the superior endplate of T4 and	Continuous
postoperative)	inferior endplate of T12, in degree	
TLK (pre- and post-	Cobb angle between the superior endplate of T10 and	Continuous
operative)	inferior endplate of L2, in degree	
LL (pre- and	Cobb angle between the superior endplates of both L1	Continuous
postoperative)	and S1, in degree	
SS (pre- and	The angle between the superior endplate of the	Continuous
postoperative)	sacrum and the horizontal line, in degree	
PT (pre- and	The angle between the line linking the midpoint of the	Continuous
postoperative)	superior endplate of S1 and the centre of the femoral	
	heads and the vertical line, in degree	
PI (pre- and	The angle between the line linking the midpoint of the	Continuous
postoperative)	superior endplate of S1 and the centre of the femoral	
	heads and the line vertical to the superior endplate of	
	the sacrum, in degree	
SVA (pre- and	The distance between the posterosuperior corner of	Continuous
postoperative)	S1 and the vertical line from the C7 body centre, in	
	mm	
TPA (pre- and	The angle between the line from the femoral head	Continuous
postoperative)	axis to the centre of the T1 vertebra and the line from	
	the femoral head axis to the middle of the S1 superior	
	endplate, in degree	

PI-LL match	Measured by the surgeon, based on the sagittal age-	Binary
PT match	adjusted score for adult spinal deformity proposed by	Binary
TPA match	Lafage et al, ⁸ categorized as match or mismatch	Binary
SAAS match		Binary

CCI, Charlson Comorbidity Index; DVT, deep venous thrombosis; EBL, estimated blood loss; FPC, failure of pelvic compensation; IVDD, intervertebral disc degeneration; LL, lumbar lordosis; MCID, minimal clinically important difference; PJF, proximal junctional failure; PI, pelvic incidence; PI-LL, pelvic incidence minus lumbar lordosis; PJK, proximal junctional kyphosis; PT, pelvic tilt; rFCSA, relative functional cross-sectional area; rTCSA, relative total cross-sectional area; SAAS, sagittal age-adjusted score; SRS-22r, Scoliosis Research Society-22r; SS, sacral slope; SVA, sagittal vertical axis; TLK, thoracolumbar kyphosis; TK, thoracic kyphosis; TPA, T1 pelvic angle; UIV, upper instrumented vertebra; UTI, urinary tract infection.

Model	Hyperparameter	Searched value	Chosen value
LR	-	-	-
RF	mtry	2, 6, 10	2
	trees	200, 350, 500	500
	min_n	20, 35, 50	35
XGBoost	mtry	2, 4, 6, 8	2
	min_n	5, 8, 12, 15, 18	8
	tree_depth	1, 2, 3	3
	learn_rate	0.001, 0.002, 0.005, 0.01, 0.02	0.01
	loss_reduction	0.004, 0.015, 0.041, 0.075, 0.158, 0.171	0.171
	sample_size	0.847, 0.871, 0.882, 0.907, 0.922, 0.943	0.922
LightGBM	mtry	2, 4, 6, 8	2
	min_n	5, 6, 7, 8, 9, 10	9
	trees	245, 311, 358, 398, 447, 498	398
	tree_depth	1, 2, 3	1
	learn_rate	0.013, 0.022, 0.033, 0.045, 0.05	0.033
	loss_reduction	0.144, 0.196, 0.291, 0.355, 0.514, 0.572	0.514
MLP	hidden_units	16, 18, 20, 22, 24	16
	penalty	0.02, 0.04, 0.08, 0.33, 0.8	0.8
	epochs	63, 77, 84, 92, 101, 127	77

Table ii. Hyperparameters for machine-learning models.

LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; RF, random forest; XGBoost, extreme gradient boosting.

Table iii. Selection of key variables. Values in italics and bold represent the variables which were selected by all three methods.

RFE	LASSO	Boruta
rFCSA	PT match	rFCSA
PT match	rFCSA	PT match
Postop SS	Postop SS	Frailty
Frailty	Osteoporosis	Postop SS
SAAS match	Malnutrition	Post-op TPA
FPC	Frailty	FPC
Postop SVA	PILL match	Osteoporosis
Osteoporosis	FPC	TPA match
Depression	Postop TK	Postop SVA
Preop SVA	Depression	Depression
Postop PT	Operation duration	Operation duration
rTCSA	SAAS match	SAAS match
TPA match	Cement injection	
Preop SS	Postop LL	
Postop TPA	Postop PT	
Symptom duration	Transfusion	
PI-LL match	Preop PT	
Cement injection		

FPC, failure of pelvic compensation; LL, lumbar lordosis; PI, pelvic incidence; PI-LL, pelvic incidence minus lumbar lordosis; PT, pelvic tilt; rFCSA, relative functional cross-sectional area; rTCSA, relative total cross-sectional area; SAAS, sagittal age-adjusted score; SS, sacral slope; SVA, sagittal vertical axis; TK, thoracic kyphosis; TPA, T1 pelvic angle.

Fig a. Screening process of key variables. CCI, Charlson Comorbidity Index; DVT, deep venous thrombosis; EBL, estimated blood loss; FPC, failure of pelvic compensation; IVDD, intervertebral disc degeneration; LL, lumbar lordosis; MCID, minimal clinically important difference; PJF, proximal junctional failure; PI, pelvic incidence; PI-LL, pelvic incidence minus lumbar lordosis; PJK, proximal junctional kyphosis; PT, pelvic tilt; rFCSA, relative functional cross-sectional area; rTCSA, relative total cross-sectional area; SAAS, sagittal age-adjusted score; SRS-22r, Scoliosis Research Society-22r; SS, sacral slope; SVA, sagittal vertical axis; TLK, thoracolumbar kyphosis; TK, thoracic kyphosis; TPA, T1 pelvic angle; UIV, upper instrumented vertebra; UTI, urinary tract infection.

Fig b. a) Receiver operating characteristic (ROC), b) precision-recall (PR), and c) decision curve analysis (DCA) curves of machine-learning models. LightGBM, light gradient boosting machine; MLP, multilayer perceptron; RF, random forest; XGBoost, extreme gradient boosting.

Fig c. Calibration curves of machine- learning models. LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; XGBoost, extreme gradient boosting.

Fig d. Shapley additive explanations (SHAP) force plot of the patient with the highest SHAP value in the test set. This patient had no comorbidities, no failure of pelvic compensation (FPC), no obvious paraspinal muscle atrophy, and satisfactory sagittal alignment. At the final follow-up, the patient achieved an ideal surgical outcome. rFCSA, relative functional cross-sectional area; PT, pelvic tilt; SAAS, sagittal age-adjusted score; SS, sacral slope.

Fig e. Shapley additive explanations (SHAP) force plot of the patient with the median SHAP value in the test set. This patient had failure of pelvic compensation (FPC), mild paraspinal muscle atrophy, and suboptimal sagittal alignment. At the final follow-up, the patient did not achieve an ideal surgical outcome. rFCSA, relative functional cross-sectional area; PT, pelvic tilt; SAAS, sagittal age-adjusted score; SS, sacral slope.

Fig f. SHAP force plot of the patient with the lowest SHAP value in the test set. This patient had failure of pelvic compensation (FPC), severe paraspinal muscle atrophy, osteoporosis, and suboptimal sagittal alignment. At the final follow-up, the patient did not achieve an ideal surgical outcome. rFCSA, relative functional cross-sectional area; PT, pelvic tilt; SAAS, sagittal age-adjusted score; SS, sacral slope.

References

1. **Charlson ME, Pompei P, Ales KL, MacKenzie CR.** A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis.* 1987;40(5):373-83.

2. **Blake GM, Fogelman I.** The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. *Postgrad Med J.* 2007;83(982):509-17.

3. **Fried LP, Tangen CM, Walston J, et al.** Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci.* 2001;56(3):M146-M57.

4. **Valentini A, Federici M, Cianfarani MA, Tarantino U, Bertoli A.** Frailty and nutritional status in older people: the Mini Nutritional Assessment as a screening tool for the identification of frail subjects. *Clin Interv Aging*. 2018;13:1237-44.

5. **Dunstan DA, Scott N, Todd AK.** Screening for anxiety and depression: reassessing the utility of the Zung scales. *BMC Psychiatry*. 2017;17(1):329.

6. **Wang D, Wang W, Wang Y, et al.** Identification and impact of failure of pelvic compensation in patients with adult spinal deformity. *Spine J*. 2024 Nov;24(11):2124-2134.

7. **Griffith JF, Wang YX, Antonio GE, et al.** Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. *Spine (Phila Pa 1976)*. 2007;32(24):E708-12.

8. **Lafage R, Smith JS, Elysee J, et al.** Sagittal age-adjusted score (SAAS) for adult spinal deformity (ASD) more effectively predicts surgical outcomes and proximal junctional kyphosis than previous classifications. *Spine Deform.* 2022;10(1):121-31.