Abstract
Purpose: Regeneration of skeletal tissue for fracture repair or during morphogenesis involves common phases of cell proliferation and differentiation. Mesenchymatous precursor cells have multiple origins. These cells can be identified in the bone marrow, in the deep layer of the periosteum and in the endosteum. More recently, the presence of circulating multipotent stem cells has been demonstrated in the general circulation. Their contribution to skeletal regeneration processes is suspected. The experiments we report allow visualisation of the multidirectional differentiation phenomena involving mesenchymatous precursor cells in an animal model of skeletal tissue regeneration.
Material and methods: An experimental surgical protocol was developed to study the regeneration of skeletal tissue in New Zealand rabbits. Eighteen animals were used. A vascularised periosteum flap was transferred onto the medial aspect of the knee. The flap was fixed in order to be exposed to flexion and extension stress during spontaneous ambulation. The joint was not damaged in any way and the adjacent bone segments were left intact. The animal was allowed to move freely postoperatively. The animal was sacrificed two days to eight weeks later to study standard histological slices taken from the regenerate region and the recipient knee joint.
Results: The zone of influence of the flap was recognised early in the environment where it was apposed. This zone involved the marrow of the metaphyseal regions, the neighbouring muscles, the joint cavity, and the menisci. Cell proliferation was noted in each of these sites. It was associated with differentiation of the precursor elements in multiple directions of the mesenchymatous lines. This led to production of cartilaginous, bony, fibrous, and even muscle tissue in the medullary cavity, in the menisci, and in the open joint space. Immunohistochemistry demonstrated the contribution of the mesenchymatous stem cells whose circulating pool was visualised.
Discussion: This work is in agreement with the recent demonstration of the contribution of stem cells to general healing phenomena, and the physiological turnover of healthy tissue.
Conclusion: The strong potential of multipotent stem cells for tissue reparation and regeneration processes opens important perspectives for cell therapy and tissue engineering. The demonstration of physiological processes operating in vivo which involve participation of the endogenous cell pool is of importance for all fields of medicine and surgery for the treatment of the musculoskeletal system.
Correspondence should be addressed to SOFCOT, 56 rue Boissonade, 75014 Paris, France.