Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PREPARATION AND CHARACTERIZATION OF NOVEL POLYDIMETHYLSILOXANE CELL SUBSTRATES TO ENHANCE OSTEOBLAST BEHAVIOUR IN VITRO

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

Cell micro-environment and biochemical, physical and mechanical signals coming from their micro-environment orientate specific functions of cells. In this study, we prepared novel hydrophilic and hydrophobic amino acids conjugated self-assembled molecules (AA-SAMs) modified Polydimethylsiloxane (PDMS) in order to observe the effect of hydropathy on osteoblasts behaviour. PDMS cell substrates were prepared with a prepolymer cross linker ratio of 10:1. Hydrophobic leucine amino acid (Leu-SAM) and hydrophilic histidine amino acid (His-SAM) conjugated SAMs were produced and characterized by using 1H Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) Spectrophotometers. AA-SAMs have ethoxy surface active head group to form SAMs on plasma oxygenated PDMS and functional head group to interact with cells. Hydrophilic 3-Aminopropyltriethoxysilane (APTS) modification was also done as a control group. Modifications of PDMS substrates were confirmed by using water contact angle measurements and X-ray Photoelectron Spectroscopy (XPS) analysis. In order to investigate cellular behaviour, as a preliminary experiment, human osteoblasts were cultured on PDMS substrates at 15.000 cells/cm2 in 48 well plates with DMEM-F12 (Sigma Aldrich, D6421) medium supplemented with 10% FBS. Cell viability and proliferation were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay after 1, 4 and 7 days. MTT assay showed a significant increase in cell proliferation in both AA-SAMs modified PDMS, in comparison to plain PDMS (p < 0,01). Among AA-SAMs and hydrophilic APTES, hydrophilic His-SAM modification was observed to provide a better cellular metabolic activity (p < 0,01). Hence, these novel AA-SAMs modified PDMS substrates are promising cell substrates to enhance osteoblast behaviour in vitro.


Email: