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Aims
The aim of this study was to create artificial intelligence (AI) software with the purpose of
providing a second opinion to physicians to support distal radius fracture (DRF) detection,
and to compare the accuracy of fracture detection of physicians with and without software
support.

Methods
The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard
view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN)
model was trained to detect the presence of a DRF by comparing the radiographs containing
a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and
five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist
(AP and lateral) for the presence of a DRF. The same images were first evaluated without, and
then with, the support of the CNN model, and the diagnostic accuracy of the two methods
was compared.

Results
At the time of the study, the CNN model showed an area under the receiver operating curve
of 0.97. AI assistance improved the physician’s sensitivity (correct fracture detection) from
80% to 87%, and the specificity (correct fracture exclusion) from 91% to 95%. The overall
error rate (combined false positive and false negative) was reduced from 14% without AI to
9% with AI.

Conclusion
The use of a CNN model as a second opinion can improve the diagnostic accuracy of DRF
detection in the study setting.

Article focus
• Train a convolutional neural network

(CNN) model to detect the presence of a
distal radius fracture (DRF) to provide a
second opinion to physicians.

• Compare the diagnostic accuracy of DRF
detection of physicians with and without
software support.
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Key messages
• Artificial intelligence (AI) software can be trained to detect

DRF with a high accuracy.
• The use of this CNN model as a second opinion improved

the diagnostic accuracy of physicians’ DRF detection in the
study setting.

Strengths and limitations
• A faster and safer diagnostic accuracy might be expected in

Emergency Departments using this software.
• Each radiograph was primarily reviewed by two orthopae-

dic trauma surgeons to ensure high quality diagnosis.
• This study had a small sample size of 11 readers and there

was no clinical examination of the patients, as retrospective
radiographs were used.

Introduction
Distal radius fractures (DRFs) are defined as juxta-articular
fractures up to 3 cm proximal to the radiocarpal joint.1 They
are among the most common fracture types in humans. The
risk for a woman aged over 50 years suffering a DRF is 15%.1,2

Chung and Spilson,3 and MacIntyre and Dewan,4 found that
DRFs are accountable for about 1% of all presentations and
15% of all fractures in Emergency Departments (EDs). The
standard treatment is either a cast immobilization and/or open
reduction and volar locking plate fixation.5,6

The number of DRFs is expected to rise in the future,
as population, life expectancy, and activity levels in elderly
people will increase.7,8 A higher number of patients in EDs has
already been observed: Polinder et al9 found an age-adjusted
increase of upper limb injuries of 13% between 1986 and 2008
in the Netherlands. Existing data predict a similar outcome for
patient numbers in Austria, with an estimated increase of over
65-year-olds from 18% in 2018 to over 27% in 2050.10

These figures underline the high prevalence of DRFs
and increasing workload in EDs. Furthermore, the large direct
and indirect costs associated with these fractures should be
considered. The cost of all osteoporotic fractures in 2010 in
the European Union amounted to €37.4 billion, with forearm
fractures accounting for 2%.11,12

Currently, diagnoses of fractures are primarily based
on clinical examination and visual assessment of conven-
tional radiographs. Although most DRFs are not difficult to
identify and occult fractures are rare, some non-displaced
fractures, especially of the radial styloid, can be challenging
to see on plane radiographs.13,14 The causes of error are
multifactorial, and can arise from subtlety of a particular
fracture in a radiograph, high workload, and inexperienced or
fatigued clinicians, especially during night shifts.15,16 Uniden-
tified fractures are the most common diagnostic errors in
EDs, comprising up to 80%.17–20 Among these, the distal
radius is one of the most frequent locations.20,21 Misdiagnosis
or overlooked fractures may result in delayed, deprived, or
prolonged therapy, pain or malfunction with decreased quality
of life or inability to work, unnecessary medical and econom-
ical costs, as well as avoidable exposure to radiation, when
performing repeated x-ray imaging or CT to confirm uncertain
image findings.14,22

Computer-assisted detection systems are a poten-
tial solution for these problems, identifying regions on

radiographs that are highly likely to contain a pathology
and providing the clinician with a quick and reliable sec-
ond opinion. Recent advances in deep learning models,
especially in convolutional neural networks (CNNs) that
specialize in processing grid-like data such as images, have
allowed for the creation of computer models evaluating
radiographs. In previous years, the potential of such models
has been analyzed by assigning them various tasks, such
as the assessment of osteoarthritis or chest pathologies and
detection of cancer or dental caries, showing great promise.23–

27 The algorithms are trained on large datasets of radiographs
and learned by example.28

With a certain number of labelled examples, a well-
designed model can be trained to assess fractures. In previous
studies, deep learning models achieved sensitivity rates for
detecting fractures on radiographs between 90% and 95%.29–

33 In comparison, the sensitivity of physicians is described as
only 71% to 82%. However, some highly specialized trauma-
tologists show a sensitivity of up to 93%.34 Several studies
have even compared the sensitivity of fracture detection
of physicians with and without AI assistance, and found a
statistically significant improvement.29,35,36

The aim of this study was to evaluate the ability
of AI software to assess plain radiographs for the pres-
ence of DRF, and to compare the diagnostic performance
of physicians detecting such fractures with and without
software support.

Methods
General
This retrospective study was approved by the local ethi-
cal review board of the Austrian Workers’ Compensation
Board (AUVA), (26/2019), and the Clinical Artificial Intelligence
Research (CAIR)37 checklist has been used for this paper.

Dataset
The model dataset consisted of 26,121 anonymized ante-
rior-posterior (AP) and lateral digital radiographs of the
wrist, which were randomly sampled from five AUVA trauma
hospitals around Austria between 2015 and 2019. Overall,
49.5% (12,934) showed a DRF and 50.5% (13,187) were
inconspicuous images showing no fracture. The radiographs
were taken from patients aged over 18 years, sustaining an
injury to the wrist. Patients who had any other diagnosis
than DRF at the time of examination were excluded. Ground
truth was defined as the diagnosis that was set during the
initial patient contact with the patient being present, which
allowed cross-checking of the set diagnosis after performing
a clinical examination and follow-up checks. Each radiograph
was primarily reviewed by two orthopaedic trauma surgeons:
first by the doctor in the ED, which could have been either an
orthopaedic trauma resident or specialist; and subsequently
by an orthopaedic trauma specialist. Additionally, ground
truth was checked again by two surgeons during the labelling
process for the study.

The model’s dataset was further randomly split into a
training set (85%), tune set (7%), and test set (8%). The training
set and tune set were used during software training, and the
test set was exclusively used to analyze the performance of the
model. This data split was skewed in favour of model training,
in order to avoid losing high-quality data for hyper-parameter
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tuning. This approach was deemed appropriate, since the final
model performance was tested in the follow-up reader study.
For blinding purposes, and to prevent bias during the test
and validation processes, the test set was kept separate from
the training set and tune set. Additionally, images from three
different hospitals were used for the training set, and images
from four different hospitals were used for the test set (two
hospitals overlapping). This means that in the reader study,

half of the images were from a completely different data
source compared with those used for the training process.

Model training process
The AI model was trained to detect the presence of a
DRF by comparing the radiographs containing a fracture
to those without a fracture. Prior to training, each fracture
was labelled by two surgeons (RB, see Acknowledgements),
one orthopaedic trauma surgeon and one hand surgeon,
drawing bounding boxes to help the model concentrate
on the point of interest. The images were pre-processed
by randomly resizing, rotating, or flipping  them horizontally
and vertically. An object detector network – a RetinaNet
with a ResNet50 backbone (Facebook AI Research (FAIR),
USA) – was used to identify the wrist area in all  radio-
graphs with AP and lateral views. A CNN was used for the
task of classifying the presence or absence of a fracture on
the image. The chosen architecture was a modified  U-Net,
with a classification  branch appended to the end of the
feature-encoding part.  Thus, the classification  model had
two outputs, the region of the potential fracture and a
score that is related to the probability of the presence of
a fracture. This was chosen since the model was developed
for a double task: the classification  score that determines
the diagnosis (fracture = 1, no fracture = 0);  and the
segmentation mask, which determines the location of the
fracture (Figures 1 and 2).

A description of the detailed architecture can be found
in the Supplementary Material.

Readers and reader study
Overall, 11 examiners (six orthopaedic trauma residents and
five hand surgeons, each of the latter having at least ten years

Fig. 1
Model prediction. The classification score above the image determines the diagnosis (fracture = 1, no fracture = 0). The segmentation mask
determines the location of the fracture (drawn polygon).

Fig. 2
Manually labelled fracture site (left) and model prediction (right).
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of experience) were asked to evaluate the radiographs. All
examiners participated independently from one another.

A total of 200 pairs of radiographs (200 AP and
200 lateral of the same wrist, respectively) were randomly
sampled by using Python library “random” (Python Software
Foundation, USA). To avoid any kind of bias, all images

showing a cast, internal/external fixation, any artefacts, or
containing inappropriate body parts (such as the elbow) were
discarded. Of the cleaned images, 100 pairs of radiographs
were randomly selected showing a DRF, and 100 pairs of
inconspicuous radiographs were randomly selected showing
no fracture. The examiners were not aware of any of these
proportions. They were asked to evaluate all 200 cases
regarding the presence of a DRF, first without the aid of AI
software and then after a three-week washout period with the
software’s diagnostic opinion as assistance. The software
showed the proposed diagnosis (fracture/no fracture) for each
radiograph. The images were presented in a random order,
and the readers had to participate independently from one
another. Skipped images were taken as wrong diagnosis.

A demo version of the software used for the reader
study can be found here, after creating an account: http://
demo.imagebiopsy.com/.

Table I. Demographic characteristics of patients used for the reader
study.

Patient group
Number of women, n
(%)

Mean age, yrs
(SD)

With fracture 66/100 (66) 58.2 (16.8)

Without fracture 50/100 (50) 41.0 (20.3)

Total 116/200 (58) 49.0 (20.5)

Fig. 3
Deep model training performance: area under the curve = 0.97. ROC, receiver operating characteristic.

Fig. 4
Deep model training performance.
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Outcome measures and statistical analyses
For descriptive purposes, demographic data including sex
and age were analyzed. The outcome measure was binary
(fracture or no fracture) and compared to the ground truth.
The standalone diagnostic performance of the AI model was
measured by using receiver operating characteristic (ROC)
and area under the curve (AUC), the latter being a stand-
ard method to describe a ROC curve, whereby an AUC of
1.0 means a perfect prediction of the reference standard,
while an AUC of 0.5 means a random outcome. Furthermore,
sensitivity (correct fracture detection), specificity (correct
fracture exclusion), Youden Index, which monitors the overall
diagnostic performance and is defined as sensitivity+specific-
ity-1, and overall error rate were described.

The diagnostic performance of fracture detection of
the surgeons was assessed by the following parameters:
AI-aided and unaided sensitivity, specificity, Youden Index, and
overall error rate. Unaided and aided diagnostic performance
was compared using paired t-test after confirming normal
distribution with Shapiro-Wilk test, otherwise using Wilcoxon
signed-rank test. Furthermore, the diagnostic improvement
of the trainees was compared to the experts by using
the independent-samples t-test, to analyze if the trainees
benefited more from the software’s assistance more than
the experts. Statistical analyses were performed using SPSS
version 27 (IBM, USA). All tests were two-tailed with signifi-
cance set at the 5% level.

Results
CNN model final training performance
The training dataset consisted of 9,017 (46%) images showing
a DRF and 10,766 (54%) inconspicuous images without
fracture. At the time of the study, the CNN model reached
an AUC of 0.97, a sensitivity of 89%, and a specificity of 93% on
the test set (Figures 3 and 4). This algorithm was used for the
following reader study.

Reader study results
In the reader study, the mean patient age was 49.6 years (SD
20.5; 18 to 103), and 116 of the 200 included patients (58%)
were female. Patients with a fracture had a mean higher age
than those without a fracture (58.2 years (SD 16.8) vs 41.0 years
(SD 20.3)), and were more often female (66% vs 50%) (Table I).

The standalone performance of the CNN model in the
reader study showed a sensitivity of 96%, a specificity of 91%,
a Youden Index of 0.87, and an error rate of 7% (Figure 5).
The reliability of the model was calculated with the help of a
reliability diagram. All model outputs are within the error bars
(Figure 6).

Unaided and aided diagnostic performance was
compared using paired t-test. AI assistance improved the
physician’s specificity statistically significantly from 91% to
95% (3.8% increase; 95% CI -1.1 to 8.7; p = 0.036), and Youden
Index from 0.72 to 0.82 (increase 0.1; 95% CI 0.0 to 0.2; p
= 0.007). Sensitivity also improved from 80% to 87% with AI
assistance, but without statistical significance (6.7% increase;
95% CI 0.5 to 14.0; p = 0.065). The overall error rate (combined
false positive and false negative) was reduced from 14% to 9%
with statistical significance (5.3% decrease; 95% CI 1.8 to 8.8; p
= 0.007) (Table II).

Trainees benefited more from AI assistance than
experts, as the Youden Index in the trainee subgroup
improved statistically significantly from 0.67 to 0.82 (increase
0.15; 95% CI 0.03 to 0.25; p = 0.020, paired t-test), but Youden
Index in the expert subgroup showed improvement from 0.77
to 0.83 without statistical significance (increase 0.06; 95% CI
-0.06 to 0.18; p = 0.223, paired t-test). The difference in
improvement between the trainees and the experts was not
statistically significant (mean difference 0.08; 95% CI -0.22
to 0.05; p = 0.200, independent-samples t-test) (Figure 6).
Detailed results of all 11 readers can be found in the Supple-
mentary Material.

Discussion
An AI algorithm was trained and tested to detect DRFs on
radiographs of the wrist with an equal or better accuracy
than that of a trauma surgeon. The standalone performance
of the CNN model with an AUC of 0.97 is comparable to
the literature (AUC 0.94 to 0.97).29–32,35 In the reader study,
the sensitivity could be improved from 80% to 87% with AI

Fig. 5
Deep model standalone performance in the reader study.

Table II. Reader study results. Unaided and aided diagnostic
performance was compared using paired t-test, a = 0.05.

Variable AI alone
Reader
without AI

Reader
with AI p-value*

Sensitivity, % 96 80 87 0.065

Specificity, % 91 91 95 0.036

Youden Index 0.87 0.72 0.82 0.007

Experts 0.77 0.83 0.223

Trainees 0.67 0.82 0.020

Error rate, % 7 14 9 0.007

*Reader's results without AI versus with AI (paired t-test, α = 0.05).
AI, artificial intelligence.
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assistance, which is also comparable to the literature, where
improvement between 7% and 11% is described.29,35,36 In this
study, the improvement of sensitivity was not statistically
significant, possibly because two of 11 readers (one resident
and one specialist) decreased their sensitivity with AI help
from 97% to 84% and from 91% to 83%, respectively, due
to unknown reasons. The AI standalone sensitivity exceeded
the unaided and the aided performance of all 11 physicians.
Regarding specificity, the AI standalone performance was
similar to the unaided performance of the physicians. The
unaided specificity of the physicians (91%) was the same
as the AI standalone performance (91%). With AI help, the
physician’s specificity could be improved to 95%; the second
opinion might increase the confidence of the physicians and
therefore improve their performance. Youden Index increased
with statistical significance in the trainee group, but not in the
expert group. When comparing the residents to the specialists,
there was no statistically significant difference, which may
have resulted from the small sample size (5 vs 6 physicians).
The three readers that improved the most were all in the
residents group (Youden Index 0.58 vs 0.86, 0.64 vs 0.83, and
0.71 vs 0.9 without and with AI assistance, respectively).

Demographic data in the reader study reflected real-life
demographics. There were more women (58%, 116/200), who
tend to suffer from osteoporosis more often than men, and
patients with fracture diagnosis tended to be older than
patients with inconspicuous images.1,2 Additionally, the 26,121
images were randomly chosen from different hospitals around

Austria, which ensured a sufficient sample size and also
allowed the model to learn from several image sources to
reflect real-world clinical conditions as closely as possible.

Limitations of this study were the small sample size
of 11 readers, and the missing clinical examination of the
patients. Moreover, retrospective radiographs were used, and
there are no data for the diagnostic accuracy of the readers
in a real-life setting, which would include the help of patients’
history and clinical examinations. Moreover, in this study we
used a version of the CNN model, where only the proposed
diagnosis was shown to the readers in the reader study. A later
version of the algorithm also showed the fracture location on
the radiographs, as described in the training process, but had
not yet been used for this reader study. With the updated
version, we expect even better results.

In conclusion, AI may improve the diagnostic accu-
racy of trauma residents and specialists. Not only might the
number of missed fractures be reduced, but the tendency
of trainees to over-report apparent abnormalities in radio-
graphs might be prevented – Williams et al38 observed a
false-positive rate of 18% in training radiologists compared
to more experienced radiologists. Furthermore, a faster and
safer diagnostic accuracy in EDs can be expected. This might
be helpful in choosing the correct treatment of DRF, which
is often a complex decision.39–41 AI algorithms could also be
used as triage systems, prioritizing patients with radiographs
that show a potential fracture. However, taking the limitations
of this study and general reservations against AI in mind, it is

Fig. 6
Reliability diagram of the model’s output on the study test set.
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important to emphasize that the use of the software can only
serve as a second opinion, and that physicians will always have
to stay in charge.25,42

Supplementary material
The supplementary material contains more information regarding
the training process and more detailed results of the reader study.
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