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Aims
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to
identify shared genetic markers and molecular mechanisms to facilitate the development of
therapies that target both conditions simultaneously.

Methods
Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the
Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and
OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning
refined the gene selection, with further validation using additional datasets. Single-cell analysis
emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA),
protein blotting, and cellular staining were used to investigate key genes.

Results
WGCNA revealed critical gene modules for OB and OP, identifying the Toll-like receptor (TLR)
signalling pathway as a common factor. TLR2 was the most significant gene, with a pronounced
expression in macrophages. Elevated TLR2 expression correlated with increased adipose
accumulation, inflammation, and osteoclast differentiation, linking it to OP development.

Conclusion
Our study underscores the pivotal role of TLR2 in connecting OP and OB. It highlights the
influence of TLR2 in macrophages, driving both diseases through a pro-inflammatory mecha-
nism. These insights propose TLR2 as a potential dual therapeutic target for treating OP and OB.

Article focus
• What are the key genes shared between

osteoporosis (OP) and obesity (OB)?
• Which cell subtype is most strongly

associated with OP and OB?
• How do key genes and cell subtypes

contribute to the progression of both
diseases?

Key messages
• Toll-like receptor 2 (TLR2) acts as a cross-

talk gene in the pathogenesis of both OP
and OB.

• The inflammatory response induced by
macrophages serves as a crucial bridge
linking OP and OB.

Strengths and limitations
• This study suggests that the TLR2 gene in

macrophages is a potential target for the
concurrent treatment of OP and OB,
guiding the design of drugs that address
both conditions through a single target.

• Our research primarily operates at the
cellular level. Future work necessitates the
development of animal models for
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experimental validation to enhance the accuracy of the
results.

Introduction
Osteoporosis (OP) is a metabolic bone disorder frequently
encountered in clinical settings, characterized by dimin-
ished bone density, reduced mineral content, a decrease
in trabecular number, and altered microarchitectural fea-
tures of bone. Due to the increased brittleness of bones,
the risk of fractures in patients correspondingly escalates,
serving as a substantial risk factor for the occurrence of
various postoperative complications.1 With the ageing of
the global population and increasing life expectancy, OP
has emerged as a major health concern worldwide. Earlier
research indicates a staggering 19.7% global prevalence rate
of OP, predominantly affecting postmenopausal and perime-
nopausal women.2,3 The onset of this disorder is commonly
attributed to profound alterations in bone remodelling. A
pivotal factor for such changes is the imbalance caused by
the diminished bone-forming capability of osteoblasts and the
amplified bone-resorptive capacity of osteoclasts. Particularly,
in the presence of ageing-related inflammation and hormo-
nal influences, precursor osteoclast cells are stimulated by
factors secreted from osteoblasts, T-cells, and macrophages,
such as colony-stimulating factor-1 and receptor activator of
nuclear factor κB ligand (RANKL). This stimulation activates
the β-catenin-dependent canonical Wnt pathway, fostering
the differentiation of mature osteoclasts and amplifying bone
resorption.4,5 Amid the myriad risk factors, inflammatory
stimuli appear to be of paramount significance. OP manifests
as a systemic inflammatory response leading to bone loss,
typically accompanied by the prolific release of inflamma-
tory mediators such as reactive oxygen species and inflam-
matory cytokines. Previous investigations have suggested
that inflammatory cytokines such as interleukin (IL)-1, IL-6,
and macrophage colony-stimulating factor (M-CSF) serve as
precursors that stimulate the differentiation of osteoclasts
via RANKL activators, either directly or indirectly augmenting
bone resorption.6

Obesity (OB) is conventionally defined in the literature
as a BMI exceeding 30 kg/m². As reported in 2021, nearly
200 million individuals globally are grappling with OB or
overweight issues – specifically, in China the OB rates have
reached 14.4% for women and 16.0% for men, with abdomi-
nal OB rates at 32.7% and 36.6%, respectively.7 Concurrently,
the proportion of diseases and fatalities induced by OB
has risen progressively. OB invariably precipitates functional
aberrations across various bodily systems. Pathogeneses of
numerous ailments, including type II diabetes, cardiovascular
disorders, bone metabolic diseases, and rheumatoid autoim-
mune diseases, bear a close nexus with OB. The systemic
metabolic imbalance induced by OB arises from its capabil-
ity to incite systemic immune system activation and ensuing
inflammatory responses. Indeed, OB is typified as a state
of chronic low-grade inflammation, where the infiltration
of bone marrow-derived inflammatory cells into the white
adipose tissue (WAT) is a hallmark feature.8 This inflamma-
tory state results from the hypertrophy of adipocytes and
the activation of macrophages within the adipose tissue.
These activated macrophages exude various inflammatory

cytokines such as tumour necrosis factor-α (TNF-α), monocyte
chemoattractant protein-1 (MCP-1), and IL-1β. The presence
of these inflammatory cytokines actuates metabolic pathways
affiliated with myriad diseases, thereby precipitating their
onset. Interestingly, macrophages – responsible for antigen
presentation, recruitment of peripheral immune cells, and
secretion of inflammatory cytokines – have become the
focal point of our attention. The polarization state of these
macrophages undergoes alterations in varying microenvir-
onments, manifesting as M1 (pro-inflammatory) and M2
(anti-inflammatory) types. It is this imbalance in the ratio of
M1 to M2 cells that exacerbates inflammatory responses.9 The
macrophage-mediated inflammatory response appears to be
a pivotal nexus linking OB and OP.

Of note is the intricate relationship between OB and
OP, both of which are metabolic disorders. A 2013 clinical
study revealed that pre- and perimenopausal obese women
displayed an inverse correlation between visceral and trunk
fat content with bone density and trabecular volume. This
suggests that obese women possess subpar bone forma-
tion capabilities and inferior bone quality.10 Another study,
utilizing a mouse model of OB induced by a high-fat diet
over 12 weeks, revealed simultaneous bone marrow adi-
pose tissue (BMAT) expansion with bone loss and bone
formation impediments.11 Bone OB induces fat accumulation,
where the WAT secretes a plethora of adipokines such as
leptin and adiponectin, along with various inflammatory
mediators, invoking an excessive inflammatory response that
impacts bone formation and resorption. Lipidomic analysis of
serum from obese model mice revealed that dysregulation
in triglyceride and phospholipid levels, due to substantial
alterations in lipid metabolic pathways, precipitates a decline
in skeletal strength, thereby adversely affecting bone health.12

Moreover, OB significantly hampers the skeletal development
of adolescents. A survey by Goulding et al13 on 90 chil-
dren and adolescents who repeatedly experienced forearm
fractures demonstrated a pronounced negative correlation
between BMI z-scores and the ultra-distal radius’s bone
mineral content (BMC) and bone mineral density (BMD),
identifying these as crucial risk factors for fractures. In obese
children and adolescents, diet, physical activity, and endocrine
level alterations lead to ectopic deposition of BMAT, causing a
physiological shift that disrupts the balance in mesenchymal
stem cell (MSC) differentiation. This imbalance prioritizes the
differentiation towards adipocytes at the expense of osteo-
blasts, consequently notably significantly increasing the risk
and susceptibility to bone fragility and fractures.14 However,
most of these studies have primarily probed from the
perspective of clinical osteoporotic parameters and serological
adipokines, without delving into the genetic level to uncover
shared pathogenic genes and mechanisms underlying OP and
OB.

With the advent of information technology, high-
throughput sequencing and gene microarray techniques have
garnered extensive utility in biomedicine, playing pivotal
roles. Scholars can now measure the expression levels of a
plethora of genes, consequently isolating those intimately
associated with disease, thereby facilitating a profound
exploration into the pathogenesis of illnesses. Employing
an integrative bioinformatics approach, combining single-
cell RNA sequencing (scRNA-seq) and bulk RNA-seq, we
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first identified associated genes from bulk RNA-seq data-
sets. Leveraging machine-learning algorithms for statistical
screening, we pinpointed the critical gene, Toll-like receptor 2
(TLR2). Utilizing single-cell technology and immune infiltration
methods, we discerned that TLR2 exhibits maximal expression
in macrophages. Concurrently, we constructed a competi-
tive endogenous RNA (ceRNA) network, seeking and analyz-
ing the modulatory mechanisms of associated genes at the
post-transcriptional level. Subsequently, through experimen-
tal methodologies, we corroborated the association of TLR2
between two distinct diseases at the cellular level, heralding
the future prospect of targeting this locus for the concurrent
treatment of OB and OP.

Methods
Data download and processing
In Figure 1, the study flowchart is shown. We retrieved
datasets related to OP and OB by searching the Gene
Expression Omnibus (GEO) database with the keywords

“Obesity” and “Osteoporosis”. The selected tissues for
sequencing included peripheral blood mononuclear cells
(PBMCs) and adipose tissue. The datasets came from both
Affymetrix (USA) and Illumina (USA) platforms. Using R
software (version 4.1.3; R Foundation for Statistical Computing,
Austria), we processed the raw data with the affy and lumi
packages.15,16 Data quality was assessed using the arrayQuali-
tyMetrics package,17 and normalization was performed using
gcrma and lumiExpresso functions.15,18 We then used the
ComBat function from the sva package to reduce batch
effects,19,20 resulting in a refined gene expression matrix.
Finally, we annotated the matrix further using the clusterPro-
filer package’s bitr function,16 preparing it for subsequent
analysis.

WGCNA and module gene selection
To explore the interrelationship between genes, we used
datasets GSE151839 and GSE56814, applying the weighted
gene co-expression network analysis (WGCNA) algorithm. In

Fig. 1
Study flowchart. DEG, differentially expressed gene; GS1, gene set 1; GS2, gene set 2; GSE, Gene Expression Omnibus; KEGG, Kyoto Encyclopedia of
Genes and Genomes; limma, linear models for microarray data; OB, obesity; OP, osteoporosis; PPI, protein-protein interaction; ROC, receiver operating
characteristic; WGCNA, weighted gene co-expression network analysis.
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the preprocessing stage, we selected the top 5,000 genes
with the highest standard deviation, and eliminated genes
with multiple missing values using the goodSamplesGenes
function.21 For network construction, a soft-thresholding
power was chosen based on the results from the pickSoft-
Threshold function.22 In the module identification phase, the
blockwiseModules function21 was used, setting parameters like
TOMType = “unsigned”. The plotDendroAndColors function21

was employed to create a dendrogram representing the
modules. Module feature analysis involved calculating the
correlation between modules and traits using the module-
TraitCor function,21 and a heatmap was generated using the
labeledHeatmap function.21 Finally, key genes were identi-
fied through intramodular analysis, laying the groundwork
for further visualization in Cytoscape (Institute for Systems
Biology, USA), facilitated by the exportNetworkToCytoscape
function.21

Enrichment analysis of module intersection genes
We focused on modules highly correlated with OB and OP.
From these modules, shared genes were identified and named
Gene Set 1 (GS1). In R, using the clusterProfiler package,
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis was conducted (p < 0.05, hypergeometric test)
(Supplementary Table i),23,24 and results were visualized using
the ComplexHeatmap package.25 Subsequently, KEGG results
were displayed as a network of functional groups using
the ClueGO plugin in Cytoscape (minimum interaction score
threshold of 0.4).26

Protein-protein interaction network construction and Hub
gene selection
Using the STRING database (version 11.5),27 we constructed
a protein-protein interaction (PPI) network for GS1 with a
minimum interaction score of 0.4.28 The cytoHubba plugin in
Cytoscape was employed to identify and analyze Hub genes
within the network, which are closely associated with diseases
and significantly influence experimental outcomes.29,30

Machine learning
Random forest (RF) is an ensemble learning method that
enhances the accuracy and stability of classification or
regression by building multiple decision trees and using their
vote or mean predictions. To reduce the number of feature
genes, we employed this classifier for gene feature selection.
We extracted and analyzed the expression matrices of GS1
in OB and bone pathology (OP), using the randomForest
package,31 identifying two sets of disease-related genes. The
intersection of these sets provided genes for further analysis.32

Before using RF, we set a seed to ensure reproducibility of our
results. We then assessed the error rate of the model based on
the dataset, with the error type being standard error (SE). This
involved comparing each tree’s classification results with the
actual label to calculate errors.

Analyzing shared genes with a validation set
Enrichment analysis of differential genes in the validation
set: Using R software and the Limma package, differential
gene analysis was performed on the validation set with a
cutoff of abs(log2) > 0.3. A p-value < 0.05 was considered
statistically significant. This approach identified overlapping

differential genes between the two datasets, termed Gene Set
2 (GS2). In R, the clusterProfiler package was used, applying
the enrichKEGG function to GS2 for KEGG enrichment analysis.
Results were visualized using the ComplexHeatmap package.
Finally, using the ClueGo plugin within Cytoscape, KEGG
results were presented as a functional network, analyzing
results from both test and validation sets to explore pathways
associated with the two diseases.

In differential analysis of genes in the validation set,
the intersection of key genes filtered by RF and Hub genes
identified by CytoHubba provided genes most correlated with
diseases, termed diagnostic genes or KeyGenes. The limma
package was used to analyze differences between disease and
normal groups in the validation set, with visualization using
boxplot.

Using receiver operating characteristic (ROC) curves,
to evaluate the diagnostic accuracy of key genes identified
by machine-learning models and determine the optimal
diagnostic threshold, the validation set was used as training
data. The pROC package was employed to validate KeyGenes,
calculating the area under the curve (AUC) and the 95% CI
to predict the accuracy of distinguishing between OB and OP
diseases using these KeyGenes. An AUC greater than 0.7 was
considered to represent optimal diagnostic value.33

Immune infiltration analysis
CIBERSORT analysis34  is a tool designed to estimate the
relative abundance of various cell types in mixed cell
populations based on gene expression data. It is groun-
ded in linear support vector regression, using an expres-
sion matrix of 22 immune cell subtypes as a reference
to deconvolute the gene expression data of mixed cell
populations.34  We extracted the expression matrices of two
diseases from the GS1 test set, and applied the CIBERSORT
algorithm35  for immune infiltration  analysis to determine
the relative abundance of immune cells.  The correlation
between the 22 immune cell types and KeyGenes was
analyzed using the limma package, with visualization
performed using ggpubr (Alboukadel Kassambara, France)
and ggExtra (Dean Attali,  Canada) packages.

Quality control and data processing in single-cell analysis
While bulk RNA-seq is unable to precisely pinpoint gene
expression in specific cellular subpopulations, to reveal the
cell clusters expressing TLR2 and for cellular experimental
validation, we turned to single-cell analysis. We used R
packages including Seurat, tidyverse, dplyr, and patchwork,36

commonly used in scRNA-seq analysis. We constructed a
Seurat object using the CreateSeuratObject function and
conducted quality control through the PercentageFeature-
Set function.36 By employing the logNormalize function, we
normalized RNA molecule counts for each cell, and then
identified 3,000 highly variable genes using the FindVariable-
Features function and the ‘vst’ method.36 We evaluated and
corrected cell cycle effects using the CaseMatch and CellCy-
cleScoring functions.36 Principal component analysis (PCA)
was performed, followed by cell clustering using the Louvain
algorithm.36 Finally, we used the Harmony package for batch
effect correction and re-clustered and dimensionally reduced
the data.37
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Annotation and visualization
Utilizing UMAP methodology and the Garnett package, we
visualized cellular differences and performed annotations.38

Data preprocessing involved normalization, scaling, and PCA,
executed through the preprocess_cds function.39 A cell
classifier was trained using the marker file, classifying the
dataset and updating the Seurat object. Finally, classification
results and gene expression densities were displayed using
the DimPlot function and the plot_density function from the
Nebulosa package.40

Construction of ceRNA network
In this research, we spotlighted TLR2 messenger RNA (mRNA),
earmarked as the core of the ceRNA network. To predict
miRNA and lncRNA targeting TLR2 mRNA, we used three tools:
miRanda, miRDB, and TargetScan. Their interaction networks
were visualized using Cytoscape software (v3.9.1).

Cell culture and high-fat model establishment
RAW 264.7 cells, obtained from the Cell Bank of the Chinese
Academy of Sciences, were resuspended in complete cell
culture medium (Dulbecco's Modified Eagle Medium (DMEM;
HyClone, USA) supplemented with 10% fetal bovine serum
(FBS; HyClone)). Cells were uniformly distributed in cell culture
dishes (Thermo Fisher Scientific, USA) and maintained in
an environment with controlled temperature (37°C), carbon
dioxide levels, and humidity. After 24 to 48 hours, cell
adherence was examined under an inverted microscope.
Non-adherent cells were discarded, and the culture medium
was refreshed every two to three days. Second-generation
cells were employed for subsequent experiments.

For osteoclast differentiation, second-generation
RAW264.7 cells were treated with osteoclastogenic induction
medium containing 50 ng/ml RANKL combined with DMEM
(procured from R&D Systems, USA).

Palmitic acid (PA; Sigma-Aldrich, Merck, USA) was
dissolved in 200 mM ethanol and combined with 10% fatty
acid-free low endotoxin bovine serum albumin (BSA) (Solarbio,
China) to yield a final concentration of 5 mM. This solution was
then diluted with DMEM to obtain a 500 µM working solution
for subsequent adipogenic accumulation assays.

Western blotting analysis
Mononuclear macrophages were initially treated with RIPA
lysis buffer (Beyotime Biotechnology Institute, China). The cells
were then subjected to ultrasonication for complete lysis,
and the lysate was incubated on ice for 30 minutes. Follow-
ing centrifugation at 4°C, the supernatant was transferred
to EP tubes for bicinchoninic acid (BCA) protein quantifica-
tion assay (Generay, China). Proteins (15 µg) were subjected
to gel electrophoresis and transferred onto polyvinylidene
fluoride (PVDF) membranes. Membranes loaded with proteins
of varied molecular weights were blocked in serum-free
protein solution, followed by an overnight incubation with
primary antibodies at 4°C. The following day, the membranes
were incubated with secondary antibodies at 4°C for an
hour. After thorough washing, the bands were visualized
using the chemiluminescence (ECL) system (Analytik Jena,
Germany) with β-actin (molecular weight: 43 kDa) serving as
the normalization control. Band intensity and relative protein
expression levels were quantified using ImageJ software

(National Institutes of Health, USA). For osteoclast differ-
entiation, the same protocol was employed. The follow-
ing antibodies were used: TLR2, matrix metalloproteinase-9
(MMP9), Cathepsin K (CTSK), and Arginase 1 (ARG1) (all
procured from Abcam, USA).

Transfection of siRNAs
TLR2 small interfering RNA (siRNA) was synthesized by
GenScript Technologies, and cells were transfected using
Lipofectamine 2000. Prior to transfection, three different
sequences were evaluated for their inhibitory efficiency, with
TLR2-si-3 (78.3% efficiency) being selected. According to the
manufacturer’s protocol, a concentration of 50 nM siRNA with
Lipofectamine 2000 transfection reagent was introduced to
RAW264.7 cells. After 72 hours at 37°C, these cells, along with
untreated controls, were employed for subsequent assays. The
siRNA sequences are listed in Table I.

Crystal violet staining
RAW264.7 cells were seeded in six-well plates at a density
of 2 × 106cells/well, and treated with either 500 µM PA or
PA + siRNA for 24 hours. Cells were then fixed with 4%
paraformaldehyde (Biosharp, China) for 15 minutes, washed
thrice with PBS, and nuclei were stained using a crystal violet
staining kit (Beyotime Biotechnology Institute). Observations
were subsequently made under a light microscope (Nikon
Eclipse Ti; Nikon, Japan).

Enzyme-linked immunosorbent assay
Cell culture supernatants from the control group, PA group,
and PA + siRNA group were collected, centrifuged at 4°C for
15 minutes to remove cellular debris, and then stored at -80°C
for subsequent assays. Pro-inflammatory cytokines TNF-α,
IL-1β, and IL-6 were quantified using commercial enzyme-
linked immunosorbent assay (ELISA) kits (Sigma-Aldrich) as
per the manufacturer’s instructions, with readings taken on a
microplate reader (Bio-Rad, USA).

Cellular immunohistochemical analysis
RAW264.7 cells were seeded in 24-well plates at a density
of 2 × 104 cells per well, and treated with either 500 µM
PA or PA + siRNA for 24 hours. Cells were then fixed with
4% paraformaldehyde (Biosharp) for 15 minutes, permeabi-
lized using 0.1% Triton X-100 (Beyotime Institute of Biotech-
nology) for 20 minutes, and rinsed thrice with PBS. Blocking
was performed with 1% BSA in PBS for 30 minutes. Primary
antibodies against inducible Nitric Oxide Synthase (iNOS) and
TLR2 were diluted at a ratio of 1:200, and cells were incu-
bated with these antibodies overnight at 4°C in the dark.
After washing thrice with Tris-Buffered Saline with Tween 20
(TBST), cells were incubated for one hour in the dark with the
specific fluorescence-labelled secondary antibody Alexa Fluor
594 (catalogue number ab150080; Abcam). After additional
washes with TBST, nuclei were stained using DAPI (Beyotime
Institute of Biotechnology) for ten minutes at room tempera-
ture. Observations were made under a fluorescence inverted
microscope (Nikon Eclipse Ti; Nikon, Japan).

TRAP staining
To assess the differentiation extent of osteoclasts, RAW264.7
cells were seeded in a 24-well plate at a density of 2 × 104 cells/
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well and differentiated using 50 ng/ml RANKL in DMEM culture
medium. Concurrently, supernatants previously collected from
two groups were introduced to observe differentiation impact.
The medium was refreshed every two days, and post six days,
cells were fixed using 4% paraformaldehyde for 15 minutes.

Thereafter, tartrate-resistant acid phosphatase (TRAP) activity
was gauged employing Leukocyte Acid Phosphatase Kits
(Sigma-Aldrich). Cells bearing a nucleus count of three or more
that tested positive for TRAP were identified as osteoclasts
under a light microscope.

Fig. 2
Weighted gene co-expression network analysis (WGCNA) identified modules of genes associated with osteoporosis and obesity in the test set. a)
Both graphs elucidate the scale-free properties of the gene co-expression network and changes in the mean node connectivity, opting for 7 as the
soft-threshold value. b) Both graphs collectively showcase the verification of the scale-free nature of the gene co-expression network, where R^2
= 0.87 and the slope = -2.1, aligning with the established criteria. c) Analogous to Figure 2a, albeit with different values; 20 is selected as the soft
threshold. d) Mirroring Figure 2b, but with distinct values, R^2 = 0.81 and slope = -1.32, both meeting the prerequisites. e) Topological overlap matrix
(TOM) heatmap delineates the TOM of all genes examined. Paler hues signify low overlap, transitioning to deeper reds indicating increased overlap.
Darkened blocks along the diagonal represent modules. The dendrogram of genes and module allocation is also presented on the left and top.
The TOM plot facilitates a refined comprehension of inter-gene relationships. f ) and g) The module clinical trait correlation heatmap, a visualization
method within WGCNA analysis, manifests the associations between modules and clinical features. Within the heatmap, the depth of colour directly
corresponds to the magnitude of correlation: red depicts positive correlation, while blue signifies inverse associations. Each cell enumerates the
correlation and its statistical significance. All p-values were calculated with Pearson correlation coefficient.

Table I. RNA interference sequences used for transfection.

Name Forward (5’-3’) Reverse (5’-3’)

tlr2-siRNA-1 UGGAGAAGGUGAAGCGAAUTT AUUCGCUUCACCUUCUCCATT

tlr2-siRNA-2 GAGAUAAGGAGAAUAGAUUTT AAUCUAUUCUCCUUAUCUCTT

tlr2-siRNA-3 CAGCAGAAUCAAUACAAUATT UAUUGUAUUGAUUCUGCUGTT

siRNA, small interfering RNA; tlr, Toll-like receptor.
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Statistical analysis
Data are presented as means and SDs. Statistical analysis
was conducted using SPSS 22.0 (IBM, USA) on triplicate
experiments. Independent-samples t-test, one-way analysis of
variance (ANOVA), and Tukey’s post hoc test were employed
for mean comparison. The coefficient of determination (R^2)
and Pearson correlation coefficient were used in the weighted
gene co-expression network analysis (WGCNA) to assess the
quality of the identified gene co-expression modules, with
R^2 values closer to 1 indicating higher biological relevance.
A hypergeometric test was used to assess the statistical
significance of gene enrichment in specific pathways. In
immune infiltration analysis and single-cell resolution studies,

all p-values were calculated using the permutation test. A
p-value < 0.05 was deemed statistically significant.

Results
WGCNA analysis reveals co-expressed modules in OP and OB
Guided by scale independence and mean connectivity
(Figures 2a to 2d), a soft-thresholding power of 8 (R2 = 0.87)
was selected for the GSE151839 dataset, while a power of 20
(R2 = 0.81) was chosen for GSE56814. This revealed a higher
number of gene clusters in the GSE151839 dataset (Figure 2e).
Conversely, the majority of gene clusters in GSE56814 were
concentrated within the turquoise, brown, and blue mod-
ules. Further examination of the module-clinical relationship
heatmaps (Figures 2f and 2g) identified 23 modules in

Fig. 3
Analysis of gene intersections within the test set module. a) to c) Bar charts are customarily employed to demonstrate the enrichment levels of each
pathway, whereas bubble plots elucidate both the enrichment levels and the number of genes for each pathway. In these bubble plots, the colour
of the bubble represents the p-value (or analogous statistical values), and the size signifies the number of overlapping genes (i.e. the genes provided
that overlap with genes in a given pathway/Gene ontology (GO) term). Circular diagrams offer a vivid representation of the relationships among
pathways. d) The protein-protein interaction (PPI) network diagram is depicted, where nodes symbolize proteins, and edges represent interactions
between these proteins. Distinct colours and thicknesses of edges denote different sources of interaction. Sky-blue lines: known interactions from
curated databases. Purple lines: known interactions from experimental studies. Blue lines: predicted interactions based on gene co-occurrence.
Green lines: derived from the literature. e) The Hubgene network map, obtained using cytoHubba through diverse algorithms, assists in refining our
comprehension of PPI dynamics and in unveiling pivotal biological processes and pathways. f ) Random forest (RF) map of GSE151839 and GSE56814.
g) RF graphs showing variable importance of GSE151839 and GSE56814. In Figure 3f, The RF map displays a model’s error rate as the tree count
increases, with the x-axis labelled "trees" (0 to 500) and the y-axis labelled "Error" (0 to 0.5). Three lines, each a different colour and style, show varying
error trends: the black line represents the overall error rate, while the red and green lines represent the out-of-bag (OOB) error rates for the two
factor levels of the group variable. Error rates tend to decrease as more trees are added. The RF graphs of variable importance in Figure 3g show
the importance of variables in a RF, listing genes or variables on the y-axis and "MeanDecreaseGini" on the x-axis. This measure reflects the mean
reduction in the model’s Gini impurity caused by each variable, with larger values indicating greater importance for prediction in the model. All
p-values were calculated with hypergeometric test. EPC, edge percolated component.
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GSE151839, with the light cyan and brown modules demon-
strating positive correlations, bearing coefficients of 0.52 (p
= 0.001) and 0.5 (p = 0.002, both Pearson correlation coeffi-
cient), encompassing 564 genes collectively. In GSE56814, five
modules were discerned, with the turquoise module emerging
as the sole positively correlated entity, exhibiting a correlation
coefficient of 0.56 (p = 0.002) and comprising 1,832 genes.

Identify module intersection genes and conduct KEGG
enrichment analysis
Intersecting positively correlated module genes from
GSE151839 and GSE56814 yielded 50 overlapping genes,
designated as GS1, which are thought to bear a significant
association with OB and OP pathogenesis. This intersection
elucidates the KEGG enrichment analysis for GS1 (Figures 3a
to 3c), revealing its enrichment in pathways such as “Viral
protein interaction with cytokine and cytokine receptor”, “Gap

junction”, and “Toll-like receptor signalling pathway”, with the
TLR signalling pathway’s constituent genes suggesting its
paramount importance in OB and OP.

Selection and validation of key genes
Utilizing the STRING database, we constructed a PPI network
for GS1 to analyze protein functionality and biological system
organization (Figure 3d), identifying potentially interactive
nodal proteins. Four topological analyses were conducted on
the GS1 PPI network with CytoHubba (Figure 3e), namely
edge percolated component (EPC), BottleNeck, Closeness, and
Betweenness, unveiling common genes such as SELL, TLR2,
CXCL10, VWF, and CSF1R, all deemed pivotal nodes across
the algorithms. Subsequently, leveraging machine learning,
we targeted genes from a statistical standpoint. Initially, the
expression matrix of GS1 in GSE151839 was extracted, and
through a RF methodology, genes BARD1, LOX, CXCL10,

Fig. 4
Validation set: correlational analysis of differentially expressed genes (DEGs) associated with osteoporosis (OP) and obesity (OB). a) and b) Heatmap of
DEGs, which visually displays the magnitude and clustering of gene expression levels. In the figure, a deeper colour denotes higher gene expression,
while a lighter colour indicates lower expression. c) Volcano plot of DEGs combines statistical significance p-values with the fold change (logFC),
facilitating a quick and intuitive identification of genes that are significantly altered and hold statistical relevance. d) and e) Bar graphs are commonly
used to illustrate the enrichment level of each pathway, while bubble plots can showcase the enrichment levels alongside the number of genes.
Within the bubble plot, the colour represents the p-value (or other metrics such as q-value), and the size signifies the number of genes, indicating
the overlap between the submitted genes and those in a particular pathway/Gene Ontology (GO) term. Circle diagrams offer a more vivid depiction
of the relationships between pathways. f ) Box plot elucidates high expression levels of the Toll-like receptor 2 (TLR2) gene in both the OP and OB
groups in the validation set, underscoring its statistical significance in gene expression. g) Receiver operating characteristic (ROC) curve of a single
gene serves to assess the sensitivity and specificity of that gene as a biomarker for survival. The TLR2 gene demonstrates promising performance in
the validation set, as portrayed by its ROC curve. All p-values were calculated with independent-samples t-test.
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TLR2, and PALLD emerged (seed = 226067). Analogously,
for GSE56814, TLR2, RALGPS2, LHFPL2, and CXCL10 were
discerned (seed = 849). An error analysis of results from
both datasets was undertaken, with variable importance plots
presented (Figures 3f and 3g). Utilizing 300 decision trees for
GSE151839 and 200 for GSE56814, the mean Gini decrease
value for the TLR2 gene conspicuously surpassed other genes,
substantiating its preeminent correlation in both diseases.

Analyze shared genes using a validation set
Two datasets, GSE5520 and GSE7158, were selected as
validation sets (Figures 4a to 4c). Differential analyses of these
datasets revealed an intersecting gene set, GS2, containing
21 genes. Subsequent KEGG enrichment analysis of GS2
identified significant enrichment in pathways (Figures 4d and
4e) such as “Hepatitis C”, “Influenza A”, and notably, the
“Toll-like receptor signaling pathway”, a pathway that was also
enriched in GS1, reaffirming its association with the pathogen-
esis and progression of OP and OB. The gene TLR2, shared
between CytoHubba and RF analyses, showed significant

differential expression between disease and control groups
in both validation sets. Specifically, in the OP validation set
from GSE7158 (Figure 4f), the expression of the TLR2 gene
was higher in the disease group than in the control group
(p = 0.027, independent-samples t-test). Similarly, in the OB
validation set from GSE55200 (Figure 4f), TLR2 expression was
again elevated in the disease group (p = 0.006, independent-
samples t-test). ROC curves constructed with TLR2 as an input
gene confirmed its differential expression in both OP and
OB (Figure 4g). The AUC for the TLR2 ROC in the GSE7158
dataset for OP was 0.759 (95% CI 0.545 to 0.929), and for
the GSE55200 dataset for OB (Figure 4g) it was 0.857 (95% CI
0.598 to 1.000), illustrating its high discriminatory potential for
both conditions. Notably, TLR2 was also enriched in “Toll-like
receptor signaling pathway”, emphasizing its pivotal role in
both diseases.

High TLR2 expression in macrophages induces inflammation
Initial immune infiltration analysis was performed using
CIBERSORT on the expression matrices of GSE151839 and

Fig. 5
Immune infiltration analysis and single-cell resolution studies. a) and b) Heatmaps delineating immune infiltration provide insights into the
abundance of immunological cells. They provide a lucid visual representation of the density and clustering scenario of diverse immune cells within
the tissues. In the heatmap, a darker hue signifies heightened immune cell abundance, whereas a lighter shade indicates reduced immune cell
presence. c) t-distributed stochastic neighbor embedding (t-SNE) analysis of the osteoporosis (OP) single-cell RNA sequencing (scRNA-seq) data
reveals 11 distinct cell subpopulations. Density plots highlight the pronounced expression of the Toll-like receptor 2 (TLR2) gene predominantly in
macrophages. d) t-SNE examination of the OB scRNA-seq data uncovers nine unique cell subgroups. Density illustrations underscore the preeminent
expression of the TLR2 gene mainly in macrophages. All p-values calculated with permutation test. RMSE, root mean square error.
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GSE56814 (Figure 5a). The GSE151839 dataset revealed
relatively abundant immune cell types, including M2
macrophages, resting mast cells, and neutrophils. Following
CIBERSORT analysis of the GSE56814 dataset and account-
ing for monocyte proportions, the dominant immune cell
types were M0 macrophages, resting mast cells, and neutro-
phils (Figure 5b), possibly suggesting chronic inflammatory
responses.

Subsequent single-cell analysis was undertaken to
delineate specific cell subgroups. Employing dimensionality
reduction and UMAP visualization techniques on single-cell
datasets for OP and OB, 12 subgroups were identified in the
OP dataset, including monocytes, mesenchymal cells, natural
killer cells, B cells, osteoblasts, macrophages, CD14 monocytes,
dendritic cells, fibroblasts, myeloid cells, and lymphocytes,
with elevated TLR2 expression in macrophages (Figure 5c). In
the OB dataset, nine cell subtypes were discerned, including

macrophages, mesenchymal cells, monocytes, adipocyte
progenitor cells, CD14 monocytes, fibroblasts, B cells, dendritic
cells, and endothelial cells, with the highest TLR2 expres-
sion observed in macrophages (Figure 5d). Based on these
findings, it is postulated that heightened TLR2 expression may
influence macrophage behaviour.

Macrophages in obesity induce M1 to M2 polarization and
inflammatory response through high expression of TLR2
To investigate the role of the identified TLR2 gene in mac-
rophage polarization and inflammation induction under a
lipid accumulation environment, we incorporated 500 µM PA
into macrophage culture media to simulate the effects of
lipid accumulation. Following 24-hour incubation with PA and
post-gene knockdown macrophages, the supernatants from
the aforementioned cultures, treated with both PA and siRNA,
were harvested. Using ELISA kits, we measured the protein

Fig. 6
Elevated expression of Toll-like receptor 2 (TLR2) in macrophages precipitates the onset of obesity and osteoporosis. a) Following transfection, the
secretion levels of interleukin (IL)-6 and tumour necrosis factor-α (TNF-α) in the supernatant were quantified using enzyme-linked immunosorbent
assay (ELISA). b) Alterations in macrophage morphology were observed before and after treatment with palmitic acid (PA) and small interfering RNA
(siRNA)-TLR2. Produced with crystal violet staining, magnification 200×. c) At the protein level, evaluate the silencing efficiency of TLR2 and the
expression levels of ARG1. d) The protein expression of TLR2/ARG1 compared with the control group was examined. e) After treating macrophages
with PA and siRNA-TLR2, we observed that the localization and expression of iNOS was in a more aggregated state. f ) Fluorescence intensity of
iNOS was detected using flow cytometry. g) Upon staining cells with tartrate-resistant acid phosphatase (TRAP), the number of multinucleated
cells increased in the PA-induced group. This change was reversed in the siRNA-TLR2 group. h) We employed Western blot analysis to detect the
expression of proteins associated with osteoclast differentiation. i) The protein expression of Cathepsin K (CTSK)/matrix metalloproteinase-9 (MMP9)
compared with the control group was examined. Data are shown as mean and SD. *p < 0.05, **p < 0.005, ***p < 0.001 compared with control cells,
calculated with one-way analysis of variance. All representative data from three independent experiments are shown.
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levels of TNF-α and IL-6 in these supernatants. PA stimulation
led to a significant increase in TNF-α and IL-6 protein levels
in the RAW264.7 mouse macrophage culture media (Figure
6a). Following this, we employed crystal violet staining to
observe macrophages post-PA treatment. We discerned an
escalation in the count of irregularly shaped cells exhibiting
protrusions and pseudopodia. However, in the siRNA-TLR2
group, a reversal in cellular morphological alterations was
evident (Figure 6b). Moreover, the TLR2 knockdown sam-
ples showed lower levels compared to the non-knockdown
groups. We then employed a Western blot assay to ascer-
tain TLR2 protein levels and ARG1, a marker for M2 macro-
phages (Figures 6c and 6d). Remarkably, the TLR2 knockdown
samples displayed elevated ARG1 expression compared to
the group exposed solely to PA, while the iNOS levels were
diminished. Utilizing a fluorescent inverted microscope to
observe iNOS expression, we found the fluorescence inten-
sity in the PA group to be notably augmented; however, the
introduction of siRNA reversed this increase (Figures 6e and
6f). These findings provide substantial evidence that under
lipid-accumulating conditions, TLR2 can direct macrophages
towards M1 polarization, enhancing their inflammation-induc-
ing potential.

Inflammation induced by macrophage polarization in
osteoporosis alters osteoclast differentiation ability
To decipher the mechanism by which high expression of
the TLR2 gene in macrophages influences the progression
of OP, we proceeded to introduce supernatants from various
groups into RAW264.7 cells and initiated differentiation with
50 ng/ml RANKL. Following differentiation, TRAP staining of
the osteoclasts revealed that the TLR2 knockdown group
could reverse the inflammation-induced promotional effect
on osteoclast differentiation (Figure 6g). Furthermore, Western
blot analysis revealed that the expression levels of CTSK

and MMP9 in the TLR2-knockdown treated supernatants
were diminished, signifying reduced osteoclast differentiation
capabilities (Figures 6h and 6i). Consequently, this affirms that
elevated TLR2 expression within macrophages can augment
inflammation-induced OP.

Construction of ceRNA network associated with TLR2
Within this network (Figure 7), TLR2 mRNA exhibited
interactions with three distinct miRNAs, namely hsa-
miR-561-3p, hsa-miR-654-3p, and hsa-miR-518d-5p. Con-
versely, we identified four long noncoding RNAs (lncRNAs)
(RP11-231G3.1, CTC-273B12.5, CTC-548K16.6, and FAM230B)
that shared interactions with at least one of these micro-
RNAs (miRNAs). Specifically, RP11-231G3.1 was associated
with hsa-miR-561-3p, both CTC-273B12.5 and CTC-548K16.6
with hsa-miR-518d-5p, and FAM230B with hsa-miR-654-3p.
Ultimately, one mRNA, three miRNAs, and four lncRNAs were
incorporated into the ceRNA network. This highlights the
restricted control pathways of individual genes as well as their
broad regulatory potential.

Discussion
To elucidate the intricate nexus between OB and OP, we
conducted a WGCNA on selected datasets pertaining to
both conditions. Following the identification of modular
genes, a KEGG pathway enrichment analysis highlighted a
significant association with the “Toll-like receptor signaling
pathway”. Previous literature denotes this pathway as pivotal
in immunoregulation, playing a cardinal role in the host’s
pathogen recognition and immune response.41 Notably, its
activation can amplify chronic inflammatory reactions which,
when exacerbated, precipitate conditions such as OB and
OP.42,43 Concurrently, this activated pathway can exacerbate
insulin resistance, further potentiating OB.44 Subsequent to
this, leveraging the construction of a PPI network coupled with

Fig. 7
Competitive endogenous RNA (ceRNA) network diagram delineates the Toll-like receptor 2 (TLR2)-associated microRNAs (miRNAs) and long
non-coding RNAs (lncRNAs).
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machine learning-based filtering, we discerned two sets of
genes – SELL, TLR2, CXCL10, VWF, CSF1R, and the combination
of CXCL10 and TLR2 – from biological and statistical perspec-
tives. Predominantly, these genes have been implicated in
the activation and regulation of immune cells, chemotaxis,
microbial recognition, and other inflammatory and immune
response processes.45,46 After an exhaustive error analysis and
correction, TLR2 emerged as the gene with the most signifi-
cant correlation.

TLR2, a member of the TLR family, has been clinically
demonstrated to overexpress in obese patients, contingent
on MyD88-induced inflammation.47 As a conserved pattern
recognition receptor, TLR2 is instrumental in inflammatory
responses and host defense against pathogenic invasions,
recognizing pathogen-associated molecular patterns (PAMPs)
and interacting with myriad endogenous agonists pertinent
to the body’s immune response. Upon external stimuli, TLR2
forms heterodimers with TLR family members, TLR1 or TLR6,
co-activating downstream pathways and promoting inflam-
mation.48 It is ubiquitously expressed on monocytes, macro-
phages, B cells, and natural killer (NK) cells, consistent with our
single-cell analysis findings. Increasing evidence suggests that
TLR2 can recognize a variety of lipopeptides and participate
in the transduction process of inflammatory signals.49 Howe
et al50 extracted macrophages from mice chronically fed with
high saturated fatty acids (PA) and stimulated them with the
TLR2 agonist lipoteichoic acid (LTA), resulting in a significant
increase in the inflammatory marker IL-6 in the supernatant.
Our research underscores that the activation of TLR2, triggered
by lipid accumulation-induced free fatty acids and adipo-
cyte-secreted inflammatory cytokines, induces a shift in the
polarization state of monocyte macrophages. This transition
from ARG1-expressing anti-inflammatory M2 macrophages
to iNOS-expressing pro-inflammatory M1 macrophages also
entailed morphological changes. Pre-existing literature has
identified M1 macrophages as pro-inflammatory, secreting
an abundance of inflammatory cytokines such as TNF-α and
IL-6, perpetuating the body’s inflammatory cascade. To affirm
TLR2’s role in this transformation, we conducted a knock-out

study, which ascertained that these changes were reversed
upon its deletion, reinforcing our premise that the identi-
fied gene indeed mediates the progression of OB through
inflammatory responses.

Subsequently, we delved into the implications for
OP. The onset of OP is intrinsically linked to an augmen-
ted differentiation of osteoclasts, leading to increased bone
resorption. Consequently, inflammation appears to be one of
the pivotal factors influencing the differentiation of osteo-
clasts and, in turn, the emergence of OP. Following stimu-
lation with RANKL, we treated precursor osteoclasts with
distinct conditioned media and discerned that the differentia-
tion capacity of osteoclasts treated with fatty acids increased.
This inference is substantiated by the upregulated expression
of differentiation-associated proteins, such as CTSK, and the
proliferation of multinucleated osteoclasts, as evidenced by an
escalated proportion of TRAP-stained positive cells. Concur-
rently, abrogation of TLR2 led to a diminished osteoclast
differentiation, aligning with the findings of Kassem et al.51

Intriguingly, Madel’s study revealed that the probiotic yeast
Saccharomyces cerevisiae CNCM I-745 specifically targets and
inhibits TLR2 and Dectin-1, diminishing the differentiation
capacity of inflammatory osteoclasts (iOC), which further
underscores the crucial role of TLR2 in promoting osteo-
clast differentiation and pathological bone loss. TLR4, closely
associated with TLR2 and a member of the TLR family,
has been demonstrated to promote osteoclast differentia-
tion leading to OP via the MyD88-TRAF6-NF-κB signalling
pathway.52,53 In addition, the TLR2/NF-κB signalling pathway
has been demonstrated to be subject to modulation by the
circadian regulatory gene BMAL1, which alters the polariza-
tion status of macrophages in mouse bone marrow, thereby
promoting osteogenesis by reducing macrophage pyropto-
sis.54 We therefore postulate that TLR2 acts as a key molecule
in this cascade (Figure 8).

Notwithstanding this, the precise mechanism of TLR2
in inflammatory OP remains elusive. Our pathway analy-
sis suggests that the influence of the immune system
serves as the nexus between OP and OB conditions.

Fig. 8
Illustration of the signalling pathway. Arg-1, Arginase 1; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; OPG, osteoprotegerin; RANK,
receptor activator of nuclear factor kappa B; RANKL, RANK ligand; TNF-α, tumour necrosis factor alpha.
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Zhang and Ni,55 through serological assessments, identified
a positive correlation between systemic immune indices
and OP, which was particularly attributed to the surge in
neutrophils and macrophages, culminating in this immune
activation response. Our subsequent immune infiltration
analysis pinpointed pivotal cells within the immune sys-
tem, such as macrophages, mast cells, and neutrophils.
Single-cell analysis further confirmed the overexpression
of the TLR2 gene in macrophages, which correlates with
the onset of both conditions, aligning with their research
outcomes. Hence, we hypothesize that an augmented immune
response coupled with inflammation is the central mechanism
underpinning the interplay between these two diseases. We
subsequently constructed an intricate ceRNA network centred
around TLR2, identifying miRNAs such as hsa-miR-561-3p,
hsa-miR-654-3p, and hsa-miR-518d-5p, as well as lncRNAs
including RP11-231G3.1, CTC-273B12.5, CTC-548K16.6, and
FAM230B. While the therapeutic potential of these non-coding
RNAs in disease contexts remains largely uncharted, they offer
promising avenues for pinpointing therapeutic targets and
drug design for concurrent treatment of both conditions.

At the time of writing, the concurrent incidence of OP
and OB remains prevalent. The primary clinical treatments
for these conditions include surgical interventions, predom-
inantly joint arthroplasty, and pharmacotherapy primarily
involving bisphosphonates. However, challenges such as poor
target specificity and substantial side effects have led to
suboptimal patient compliance. Consequently, there is an
urgent need to identify more effective treatment strategies
and medications.56,57 Notably, vitamin D is recognized as an
osteoprotective agent and a therapeutic for OP, with recent
studies confirming its role in regulating insulin synthesis
and metabolism, thereby influencing OB.58 Additionally, the
trace element selenium has been shown to mitigate OB
by adjusting liver fat accumulation and the resultant iron
homeostasis imbalance. A recent meta-analysis revealed a
positive correlation between selenium intake and BMD in
volunteers, while inversely correlating with the incidence of
OP, suggesting selenium’s potential as a therapeutic agent
for OP.59,60 Based on these findings, we hypothesize that
targeting a single drug could address the clinical challenges
presented by these comorbidities. Our research has identified
the key gene TLR2 and its induced macrophage inflamma-
tory response, unveiling the potential molecular mechanisms
increasing the comorbidity of OB and OP. This discovery
provides potential diagnostic markers for both diseases,
and guides the future design and development of targeted
therapies.

In conclusion, in our study we introduced a novel
approach by employing bioinformatics analysis combined
with machine learning to identify the shared pivotal gene,
TLR2, between OP and OB conditions. Concurrently, through
immunoinfiltration and single-cell analyses, we elucidated that
the elevated expression of TLR2 within macrophages serves
as a critical mechanism underlying the onset of both diseases.
Centering on TLR2, we constructed a ceRNA network, laying
a theoretical foundation for future pharmacological designs
targeting a singular point to concurrently treat both ailments.
However, further investigations are warranted to unravel the
downstream signalling pathways and molecular mechanisms.
Additionally, our validation experiments were confined to

cellular assays, without delving into the pathogenic roles of
the gene at an animal model level.
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