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Osteoarthritis (OA) is a highly prevalent and disabling disease with an unmet therapeutic need.
The characteristic cartilage loss and alteration of other joint structures result from a complex
interaction of multiple risk factors, with mechanical overload consistently playing a central role.
This overload generates an inflammatory response in the cartilage due to the activation of the
innate immune response in chondrocytes, which occurs through various cellular mechanisms.
Moreover, risk factors associated with obesity, being overweight, and metabolic syndrome
enhance the inflammatory response both locally and systemically. OA chondrocytes, the only
cells present in articular cartilage, are therefore inflamed and initiate an anabolic process in an
attempt to repair the damaged tissue, which ultimately results in an aberrant and dysfunctional
process. Under these circumstances, where the cartilage continues to be subjected to chronic
mechanical stress, proposing a treatment that stimulates the chondrocytes’ anabolic response
to restore tissue structure does not appear to be a therapeutic target with a high likelihood
of success. In fact, anabolic drugs proposed for the treatment of OA have yet to demonstrate
efficacy. By contrast, multiple therapeutic strategies focused on pharmacologically managing
the inflammatory component, both at the joint and systemic levels, have shown promise.
Therefore, prioritizing the control of chronic innate pro-inflammatory pathways presents the
most viable and promising therapeutic strategy for the effective management of OA. As research
continues, this approach may offer the best opportunity to alleviate the burden of this incapaci-
tating disease.

Article focus
• OA is a mechanically induced disease with

a sustained chondrocyte inflammatory
response.

• Inflammation leads to an aberrant
anabolic chondrocyte phenotype in an
attempt to repair tissue damage.

• Beyond treatments targeting overload and
systemic risk factors, there is potential for
pharmacological strategies to address
inflammation and enhance anabolism.

Key messages
• Alongside standard therapeutic measures,

anti-inflammatory treatment could be
prioritized.

• The removal of hypertrophic-like phenom-
ena in inflamed chondrocytes does not
modify the course of OA, reflecting the
failure of the reparative response in this
context.

• Clinical trial results with anabolic agents
have not yet demonstrated improved
efficacy in OA patients.

Introduction
Osteoarthritis (OA) is the most prevalent
chronic musculoskeletal disease in developed
countries, and it is one of the leading causes
of pain and disability in adults, placing
a significant burden on global healthcare
systems. With population growth and ageing,
it is estimated that this disease will become
the leading global cause of disability in a
few years, affecting more than one-third
of the global population.1 However, despite
enormous financial efforts in clinical research
and drug development, treatment options
for these patients have barely progressed in
decades, failing to incorporate new therapies
capable of altering the course of the disease,
which often progresses to a loss of function,
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eventually making surgical joint arthroplasty necessary.2

Classically described as a primary wear-and-tear
disease of the articular cartilage, OA is now recognized as a
condition with a substantial inflammatory component that
affects not only the cartilage but also the synovial mem-
brane, subchondral bone, and other joint structures.3-5 In the
search for new drugs, particularly in the identification of
suitable therapeutic targets, it is crucial to analyze the complex
pathogenic mechanisms involved in the disease, involving a
close interaction between mechanical overload experienced
by the joint, the pro-inflammatory response associated, and
the pro-anabolic attempt to repair and regenerate tissue. In
this work, our intention is not to systematically review the
current pharmacological proposals for OA – there are excellent
recently published works in this regard.6,7 In this narrative
review, we instead provide an overview on this complex
pathophysiology of the disease, with special emphasis on the
distinctive response of the cartilage to the different stimuli
and how the various targeted therapeutic proposals could
modulate this response, as well as that of the other joint
tissues. Avoiding targeting inappropriate pathways could save
considerable human and economic costs in this area.

Mechanical overload in an inflammatory context
OA is primarily associated with mechanical overload of the
joint, which is the only factor consistently present in the
onset and development of the disease.8 Risk factors include
malalignment, obesity, or repetitive stress due to certain
occupations. These can lead to increased strain on other-
wise healthy cartilage, contributing to the development and
progression of OA. Alternatively, even a normal load on a
joint that has lost its inherent structural properties can lead
to injury.8,9 This last scenario is particularly relevant for the
elderly, or for joints with more fragile tissues due to genetic
or metabolic factors. In such cases, the load is not excessive
by normal standards, but is too much for a compromised
structure to handle.9,10 Thus, it may be considered a relative
overload.

As a decisive factor in its pathogenesis, relief of
mechanical overload alone leads to a slower progression
of the disease. In this regard, joint distraction surgery has
demonstrated promising outcomes in patients with knee OA.
Jansen et al11 reported that applying controlled mechanical
stress to the affected joint stimulates cartilage regeneration,
reduces inflammation, and enhances overall joint function,
particularly in young adults with advanced OA. It is worth
noting that these patients did not experience a complete
cessation of loading, which could be detrimental to the
cartilage, as observed in different in vitro and in vivo studies,10

as they maintained synovial fluid pressure oscillation while
walking.

Mechanical overload can induce joint damage through
different mechanisms. Damage-associated molecular patterns
(DAMPs) that arise from mechanically injured cartilage and
other joint tissues, such as small fragments derived from
extracellular matrix (ECM) disintegration, or released from
apoptotic or damaged cells, are endogenous signals able to
activate different Toll-like receptors (TLRs) (Figure 1).12,13

In addition, other evidence shows that mechanical
overload per se does not solely cause the progressive wear
of cartilage, but activates mechanosensors in this tissue

specifically designed to respond to variations in load intensity.
Various cellular mechanisms capable of translating physical
signals into biochemical signals that activate cellular respon-
ses are present in cartilage.14,15 Nociceptive and mechano-
sensitive mechanisms, particularly integrins, ion channels
involved in Ca2+ influx such as Piezo1/2 and transient receptor
potential channels of the vanilloid (TRPV) subfamily, TRPV1
and TRPV4, are expressed in chondrocytes, where they can
transduce hyper-physiological mechanical stress into the
activation of oxidative, proinflammatory, and chondrogenic
pathways (Figure 1).14,15 Interestingly, TLR4 activation could
directly mediate mechanosensing pathways jointly modulat-
ing the activation of proinflammatory mediators, as has been
described in innate immune cells.16

Therefore, mechanical stress not only directly causes
physical deterioration of the ECM and the chondrocytes, but
also triggers an inflammatory response through the activa-
tion of innate immune mechanisms, eventually leading to the
activation of different nuclear factors (NFs), especially NFκB,
via mechanisms dependent on the activation of mitogen-acti-
vated protein kinases (MAPKs), as depicted in Figure 1.8,17,18

This ultimately induces the synthesis of pro-inflammatory
mediators and catabolic enzymes responsible for cartilage
degradation.17-19 In contrast, and in line with the results
from van Helvoort et al,20 a physiological load induces an
anti-inflammatory response in chondrocytes, mediated by the
synthesis of cytokines such as IL-10 or IL-4. Collectively, these
results indicate that chondrocytes are capable of regenerating
cartilage when they are not subjected to intense mechanical
loading.

Another aspect to consider is the complex effect of
obesity and being overweight on OA outcomes. Substantial
weight loss is associated with pain relief and a reduced
rate of cartilage deterioration in OA patients,4,21 while weight
gain may exacerbate radiological and symptomatic OA.22

However, it is essential to recognize that mechanical over-
load is just one aspect of the relationship between obesity
and OA. The role of metabolic health in maintaining overall
and joint wellbeing is critical. Poor nutrition, which can lead
to immunosuppression, might contribute to conditions like
muscle weakness, thereby posing an additional risk factor for
OA. Additionally, overnutrition leads to chronic inflammation,
which also adversely affects cartilage.23,24 Different adipokines
released by both intra-articular and extra-articular obese
fat tissue have a pro-inflammatory effect on joint cells.25-27

Specifically, leptin, adiponectin, resistin, and visfatin levels are
locally dysregulated in OA joints, frequently in correlation with
cartilage structural alteration, where these mediators mainly
induce pro-inflammatory and pro-catabolic pathways.28,29 In
addition, the increased levels of specific nutrients would be
able to structurally weaken the tissue. Different data show
that elevated concentrations of specific fatty acids, glucose,
and microcrystals – common occurrences in OA joints – are
able to stimulate the chondrocyte release of pro-inflammatory
enzymes and cytokines, as well as metalloproteases, which
ultimately contribute to tissue damage.26,30-35 Once again, the
mechanism associated with the induction of the inflamma-
tory response by these factors is the activation of the innate
immune response, primarily through TLR2/4 and NOD-like
receptor family pyrin domain containing 3 inflammasome
(NLRP3) (Figure 1).12,36
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Therefore, both mechanical overload and additional
factors associated with obesity/being overweight are
mechanisms that activate the innate immune response in
cartilage, where they are capable of inducing pro-inflamma-
tory and pro-catabolic mechanisms.

In general, the activation of the innate immune
response is a mechanism designed for the self-defense of
the organism against injury to any tissue, and it functions
to fully resolve inflammation and facilitate tissue repair.37

However, when the aggression persists and the mechanisms
for the resolution of inflammation prove to be ineffective,
inflammation can become chronic, presenting with the classic
granulomatous appearance as seen in chronic skin ulcers,
due to the development of extensive angiogenesis and cell
infiltration. By contrast, cartilage is an avascular tissue, lacking
the blood vessels typically involved in the inflammatory
response. Pathological or relative chronic overloading can

lead to a unique form of destruction specific to this tissue,
which in turn hinders the proliferative phase inherent to the
inflammatory response.38 From this perspective, OA can be
viewed as a chronic cartilage injury resulting from continuous
mechanical stress without the involvement of classical tissue
repair mechanisms.36 However, the joint is composed of more
structures that are also affected in OA, such as the synovium
and the subchondral bone.38 Hence, OA is a condition with
a mechanical origin that leads to chronic inflammation of
both the cartilage and synovium through the activation of the
innate immune system.12

Aberrant anabolism
Although OA cartilage lacks classic inflammatory features such
as neoangiogenesis and immune cell infiltration, it undergoes
a chronic inflammatory process mediated by the release of
proinflammatory cytokines, prostaglandins, oxidative stress

Fig. 1
Cellular mechanisms activating the innate immune response in osteoarthritic chondrocytes. Both direct mechanical overload and the presence
of various damage-associated molecular patterns (DAMPs) can activate a pro-inflammatory and prochondrogenic response in osteoarthritic
chondrocytes. Physical signals are detected and transduced by different cellular mechanisms, particularly integrins and ion channels involved in
Ca2+ influx, such as Piezo1/2 and the transient receptor potential vanilloid (TRPV) subfamily. TRPV1/4 and Piezo1/2 channels are opened in response
to mechanical overload, leading to a large influx of Ca2+ into the cytoplasm. Integrins act as mechanoreceptors through their interaction with
the extracellular matrix (ECM), disrupting the cytoskeleton and activating the phosphorylation of focal adhesion kinases (FAKs). Dysregulation of
the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K/AKT) pathways is ultimately responsible for
activating pro-inflammatory and prochondrogenic pathways in osteoarthritis (OA) chondrocytes through the modulation of various nuclear factors.
At the same time, direct activation of TLR2/4 receptors, which are overexpressed in OA chondrocytes, along with the assembly of the NOD-like
receptor pyrin domain-containing-3 (NLRP3) inflammasome by microcrystals and other DAMPs, also activates pro-inflammatory mediators. All these
mechanisms dysregulate MAPK, leading to the activation of nuclear factors such as NFκB, which increases the release of tissue-damaging enzymes
and pro-inflammatory cytokines. AGEs, advanced glycation end products; AKT, protein kinase B; AP-1, activator protein-1; ASC, apoptosis-associated
Speck-like protein; CaM K, calcium/calmodulin-dependent protein kinase; COX-2, cyclooxygenase-2; ERK, extracellular signal-regulated kinase; FFA,
free fatty acid; IL, interleukin; IκBα, inhibitor of kappa B; IRAK, interleukin-1 receptor-associated kinase; JNK, c-Jun N-terminal Kinase; oxLDL, oxidized
low-density lipoprotein; ROS, reactive oxygen species; TLR, Toll-like receptors; TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain-containing
adapter-inducing interferon-β. Created with BioRender.com.

Aberrant anabolism hinders constructive metabolism of chondrocytes by pharmacotherapy in OA
R. Largo, A. Mediero, C. Villa-Gomez, I. Bermejo-Alvarez, G. Herrero-Beaumont

201



mediators, and DAMPs (Figure 2). As has been described,
these cells exhibit an abnormal anabolic response, reactivat-
ing signalling pathways which operate during endochondral
ossification in the growth plate during limb development.39-41

As depicted in Figure 2, the hypertrophic-like phenotype
is characterized by an increased gene expression of Runt-
related transcription factor 2 (RUNX2), the hedgehog (HH)
pathway, type X collagen, active metalloproteinase (MMP)-13,
alkaline phosphatase, and others, while the expression of
type II collagen or aggrecan decreases.39-41 This phenotype
manifests not only as altered gene expression but also as a
hypertrophic morphological phenotype, evidenced by larger
chondrocyte size compared to healthy counterparts (Figure 2).
Importantly, this increase in cell size positively correlates with
cartilage degeneration in both human and animal models
of OA.42 It is also important to note that both hypertro-
phic and inflammatory markers can be expressed simultane-
ously in OA chondrocytes.42 This finding challenges the view
that OA chondrocytes differentiate into either inflamed or
hypertrophic states, suggesting instead a complex, multifunc-
tional role in OA pathology whereby individual cells concur-
rently undergo inflammation and become embroiled in an
ECM remodelling programme. However, the characteristics of
these aberrant anabolic responses and those of hypertrophic-
like chondrocytes are not yet fully understood. Recently, an
experimental model of OA in genetically modified animals in
which chondrocyte hypertrophy was knocked out in skele-
tally mature mice was employed to delve deeper into this
issue. In this model, chondrocyte hypertrophy was specifically
inhibited in skeletally mature mice. In these animals, induction
of OA by joint instability did not activate the HH pathway in
the articular cartilage.39 In comparison with OA animals that
were not genetically manipulated, no increase in the presence
of RUNX-2 or collagen X was observed in the cartilage of the
genetically modified OA mice. As hypertrophy was genetically
inhibited, OA did not lead to an increase in chondrocyte size
in these animals, in contrast to the non-modified animals,
where chondrocyte enlargement was evident. Furthermore,
hypertrophy blockade significantly reduced the levels of
matrix metalloproteinase (MMP)-13 and MMP-3 compared to
wild-type OA mice. However, the genetic manipulation which
impeded the hypertrophic-like phenotype was not able to
modify the cartilage damage observed in the OA animals.39

These data suggest that activation of the hypertrophic
pathway in chondrocytes is not a primary pathogenic event,
but rather a phenomenon that occurs as a result of the
set of stimuli perceived by chondrocytes. These stimuli lead
them to remodel the ECM, shifting towards a hypertrophic
phenotype, characterized by decreased type II collagen and
proteoglycans, increased type X collagen, and elevated levels
of matrix-degrading enzymes. It becomes evident that the
hypertrophic anabolic response fails in its reparative attempt
in the context of OA. In line with this idea, it is therefore
understandable that blocking the hypertrophic process in the
mouse experimental OA model, as mentioned above, led to
the persistence of the cartilage damage and the progression
of its deterioration. The pathological attempt at chondrocyte
repair, instead of restoring the cartilage, may contribute to
the disease progression due to an inadequate and maladap-
tive response of the hypertrophic chondrocytes. Considering
the aberrant anabolic transformation of chondrocytes, would

it be reasonable to propose a pro-anabolic treatment in OA
with the aim of restoring cartilage tissue while pathological
overload continues to damage the tissue?

Targeting anabolic pathways in inflamed chondrocytes
With the rationale of enhancing the chondrogenic potential
of cartilage and increasing ECM synthesis, various treatments
have been proposed as potential disease-modifying OA drugs
(DMOADs). Fibroblast growth factor (FGF)-18 is an essen-
tial regulator of chondrogenesis, and stimulates articular
cartilage chondrocyte proliferation and the synthesis of ECM
in cells in culture and cartilage explants.43-45 Pre-clinical data
have indicated that intra-articular administration of FGF-18
shows therapeutic efficacy in mouse models of spontaneous
and surgically induced OA.46 However, the administration of
sprifermin, a truncated product of recombinant human FGF-18
with greater affinity to the FGF-18 receptor FGFR3, to knee OA
patients with Kellgren-Lawrence grade 2/3, did not demon-
strate any clinically significant effect on medial tibiofemoral
cartilage thickness after a two-year evaluation using quantita-
tive MRI. More recent post-hoc analyses conducted at longer
timepoints have also failed to yield clinically relevant results.47

Transforming growth factor (TGF)-β has also been
investigated as a DMOAD. TGF-β generally regulates ECM
synthesis, but its effects can vary between different joint
tissues, yielding contradictory results.48 Dysregulation of TGF-β
signalling occurs in ageing and OA chondrocytes, character-
ized by increased pro-catabolic signalling and a decrease in
pro-anabolic effects.49 However, it appears to contribute to
osteophyte formation and synovial fibrosis in OA joints.50

In different clinical trials, intra-articular administration
of allogenic chondrocytes, along with chondrocytes engi-
neered to overexpress TGF-β, has been tested specifically
in the hope of improving cartilage structure.51 Although no
safety issues were reported, and some studies indicated a
possible improvement in OA symptoms, results from phase
2 and phase 3 clinical trials in recent years have not proven to
be compelling enough for approval by regulatory agencies.52

New phase 3 trials to determine effectiveness and efficacy are
currently on hold.

In an attempt to target the increased Wnt pathway
activity observed in chondrocytes, synovium, and subchondral
bone, the administration of Wnt signalling inhibitors has been
proposed as a form of OA treatment.53,54 The inhibition of
intranuclear kinases CLK2 and DYRK1A has shown promise
in enhancing chondrogenesis and inhibiting joint destruction
in preclinical OA models treated with Lorecivivint.55 However,
different phase 2 clinical trials analyzing the effect of intra-
articular Lorecivivint administration during 24- and 52-week
periods did not demonstrate significant effects on joint space
width in comparison to placebo.56-58 Long-term studies are
currently being conducted.

In 2022, it was reported that the C-terminal portion
of angiopoietin-like 3 had pro-chondrogenic effects. This
derivative acted as a potent inducer of chondrogenesis in
human mesenchymal stem cells. Moreover, it was shown to
enhance cartilage matrix synthesis and regenerate cartilage
in preclinical models of OA.59 However, the cellular mecha-
nisms by which these effects occur are yet to be clarified.60

Phase 1 studies with this peptide do not show evidence of
its efficacy in patients, although the treatment does appear
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to have partially reverted the OA transcriptome signature in
human cartilage.59 This drug is currently in a phase 2b trial in
patients with knee OA (NCT04864392).

Multiple clinical trials have been initiated in the
last decade using mesenchymal stromal cells (MSCs) from
different sources for the treatment of OA, as these cells have
the potential to differentiate into chondrocytes capable of
forming a cartilaginous matrix. However, the source, prepara-
tion for administration, route of administration, and placement
within the joint lack standardization. Moreover, only a limited
percentage of studies are placebo-controlled.61 In any case,
there is currently no evidence of DMOAD activity for these
treatments.62

Anti-inflammatory pharmacology approach
As a result, anabolic drugs do not appear to be a promis-
ing strategy for treating OA. Instead, our approach should
remain focused on the established strategy of eliminating
risk factors that slowly erode cartilage integrity, rather than
seeking a single definitive drug solution. From a pharmacolog-
ical perspective, the objective could involve exploring drugs
that moderately reduce the inflammatory response triggered
by the activation of innate immunity.12,25,63 In OA joints, various
tissues are inflamed, including not only cartilage but also
the synovium, both activated by the same inducers.12,64 These
factors stimulate the innate immune response mainly through

TLR activation. These receptors are present in chondrocytes,
synovial fibroblasts, and, critically, in macrophages.13,65 TLR2
and TLR4 can be activated by mechanical overload, but
also by different mediators released during ECM destruction,
such as biglycan, fibronectin, low molecular weight hyalur-
onan, or cell damage such as alarmins HMGB1 and S100
family.5,13,66-68 An inflammatory response is evident in syno-
vial tissue, although it differs from more aggressive synovitis
conditions such as rheumatoid arthritis (RA).69 It features a
discreet proliferation of lining cells, a significant increase in
angiogenesis with distinct thicker-walled concentric vessels,
and, notably, frequent perivascular oedema.70 This oedema
has been recently attributed to direct mechanical overloading
effects, as it is observed in individuals with gait alterations
in the early stages of the disease.70 Macrophage infiltration
is also characteristic, although overall cellular infiltration is
not as extensive as in RA. Additionally, the contribution of a
low-grade, chronic systemic inflammation to joint damage has
been recognized, mainly associated with metabolic alterations
such as obesity or type 2 diabetes.71

With the pharmacological goal of controlling the
inflammatory component at both the joint and systemic
levels, several therapeutic approaches have been explored.2,72

The use of non-steroidal anti-inflammatory drugs (NSAIDs),
inhibitors of cyclooxygenase (COX)1/2, are in fact the
most commonly employed pharmacological therapy in the

Fig. 2
Chronic mechanical overload induces chondrocyte phenotype transformation. Physiological load induces an anti-inflammatory response in
chondrocytes, mediated by the synthesis of cytokines such as interleukin (IL)-10 or IL-4. In contrast, mechanical overload triggers an inflammatory
response through the activation of innate immune mechanisms, which induces the synthesis and release of pro-inflammatory and catabolic
mediators including procaspases, metalloproteases, and chondrogenic mediators. The persistence of the innate immune response activation
generates a pro-anabolic response characterized by the recapitulation of expression patterns of hypertrophic chondrocytes in the growth plate,
which fails to repair the tissue and results in a dysfunctional cartilage. ADAMTS-5, a disintegrin and metalloproteinase with thrombospondin motifs 5;
COX-2, cyclooxygenase-2; IHH, Indian hedgehog; IL, interleukin; MMP, matrix metalloproteinases; TNF, tumour necrosis factor; TIMP, tissue inhibitor of
metalloproteinase. Created with BioRender.com.
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treatment of OA, with a proven analgesic effect in multi-
ple studies.73,74 Moreover, some of these drugs have been
shown to modulate the synthesis of certain pro-inflammatory
mediators in the cartilage and synovial membrane of OA
patients.75-77 However, their effect on cartilage structure has
been highly debated, not only in OA patients but also in
different chronic inflammatory joint diseases.78 Additionally,
their side effects are recognized as a considerable limitation to
their use, especially with continuous administration.73,74

Pro-inflammatory cytokine antagonists have been
tested for the treatment of OA. However, various clinical trials
failed to demonstrate protective effects on the OA joint in
patients treated with IL-1 blockers or TNF antagonists over a
duration of six to 12 months.79–81 Nevertheless, a multitude
of new clinical trials utilizing these drugs in different formula-
tions for OA treatment are now underway.72 The rationale for
these trials is rooted in the outcomes of the CANTOS trial,
where the administration of canakinumab, an IL-1β antagonist,
to patients with a history of cardiovascular disease was shown
to reduce the recurrence of new cardiovascular events.82 In
an exploratory analysis of these patients, it was revealed that
canakinumab also reduced the need for hip/knee arthroplas-
ties in OA patients.83 However, while the CANTOS trial had
a large sample size and long-term follow-up, it was not
primarily designed to investigate the efficacy of canakinumab
in OA, and many relevant outcomes were not initially assessed,
necessitating further confirmatory studies.

It is interesting to note that intracellular pro-inflam-
matory pathways are redundant in OA chondrocytes. For
example, the induction of the TNF pathway shares the
activation of the TRAF6 factor with the TLR2/4 pathway.12

Similarly, the activation of the IL-1β pathway increases the
middosome complex formation, as in the TLR pathway.84 This
is probably why treatments that only block one of these
mediators, such as anti-TNF or IL-1 blockers, have not been
successful for OA treatment.13 It is possible that the use
of inhibitors of master-regulators of inflammation, such as
regulators of MAPK phosphorylation or nuclear factor activity,
could have a greater disease-modifying capacity.

Several hydrophobic small molecules, including
quercetin, 6-gingerol, curcumin, resveratrol, berberine, and
others, exhibit a TLR4 inhibitory profile, making them
promising candidates for OA treatment.85–87 Along these lines,
we have tested the effect of 6-shogaol, a ginger derivative
that was shown to block the activation of the innate immune
response in chondrocytes.88 Docking studies confirmed that
this small molecule can specifically bind to TLR4 structure.89

Natural ligands such as LPS bind inside the hydrophobic
pocket of MD-2, the co-receptor, allowing the conformational
change that transmits the signal.90 Specifically, phenylalanine
126 moves towards the inner region of MD2, adopting what
is known as agonist conformation, which favours signal
transmission. 6-shogaol can bind to the hydrophobic pocket in
MD-2 with predicted favourable binding energies. A dynamic
study has corroborated that 6-shogaol binding retains the
phenylalanine residue outside the structure, in an antago-
nist conformation. Therefore, 6-shogaol serves as an effective
ligand for the TLR4/MD-2 complex, mimicking the action
of certain small molecules known to inhibit or block TLR4
activity.89 Furthermore, when administered orally, 6-shogaol
has been shown to ameliorate knee OA in a mouse model

of the disease, decreasing COX-2 and MMP13 expression in
different joint tissues.89

The activation of the innate immune response in
chondrocytes also alters the regulation of the phosphoino-
sitide 3-kinase/protein kinase B (PI3K/AKT) pathway and
increases oxidative stress in these cells.91,92 In fact, the
PI3K/AKT pathway is significantly inactivated in articular
cartilage of OA patients compared to healthy individuals.92

The decrease in autophagy in OA chondrocytes results from
the dysregulation of various downstream mediators of this
pathway, particularly hypoxia-inducible factor (HIF)-1α. In this
context, various molecules have been proposed as potential
treatments for OA in the hope of activating the PI3K/AKT
pathway, restoring chondrocyte autophagy, increasing HIF-1α
levels, and inhibiting the senescent phenotype in these cells.93

Among them, studies involving metformin are noteworthy, as
it has been shown to activate AMP-activated protein kinase
(AMPK) and exert a chondroprotective effect by decelerating
OA development and progression in mouse OA models.94

Recent studies have suggested that metformin use may have a
beneficial effect in obese or type 2 diabetic OA patients.95,96 For
this reason, several clinical studies are underway to establish
whether metformin possesses DMOAD properties in these
patients.6

Conclusion
In summary, the OA joint essentially functions as an inflamed
organ wherein cartilage and synovium are highly sensitive not
only to mechanical overload, but also to alterations in nutrient
concentration and the presence of tissue debris resulting
from joint degradation. These factors collectively trigger the
activation of the innate immune response within these tissues.
This immune response, regulated by MAP kinases, eventu-
ally activates nuclear factors, primarily NFκB, leading to the
release of pro-inflammatory factors and catabolic enzymes.
This response is further amplified by the released cytokines,
creating a feedback loop that perpetuates inflammation and
generates an aberrant pro-chondrogenic response in the
cartilage, which fails to repair the damaged tissue. Treatment
with agents aimed at stimulating the anabolic process in
this context of dysfunctional anabolism does not seem likely
to succeed. It is likely that early mitigation of the inflamma-
tory burden could prevent the feedback loop and reduce
the detrimental catabolic effects on the tissue. Therefore, the
primary objective in OA treatment is to block pro-inflamma-
tory and catabolic pathways. Targeting the chronic innate
pro-inflammatory pathways represents the most promising
approach for managing OA.
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