ith an increasing incidence of orthopaedic procedures per-

formed worldwide, the quantity of data collected, includ-

ing “Big Data”, is also rising. Widening indications for

surgery, a growing number of implant options and variety
of operative techniques, as well as an increasing need to demonstrate cost
effectiveness, necessitate the use of robust analysis techniques to assess
outcomes.

Traditionally, analysis of outcomes in orthopaedic surgery involves sur-
vival methods, where the outcome of interest is ‘time to event’, which is
usually revision or re-operation. For arthroplasty, this represents the time
from the date of insertion of the implant until the date on which the revi-
sion is performed and patients whose outcomes are not known or have
died are censored. Revision is generally taken as the primary indicator of
failure of a joint replacement. Although revision/re-operation is dependent
on many factors, including the fitness for surgery of the patient, it provides
a firm endpoint for analysis, particularly in epidemiological studies.

One of the strengths of survival analysis is the handling of incomplete
data or follow-up. If an event is not seen within the timeframe observed or
reported, there would be incomplete observations, known as censored
events. ‘Right’ censoring is the most common and occurs either if a subject
does not experience the event during the study period, is lost to follow-up
or withdraws from the study. Death is another reason for censoring.

The ‘risk set’ at a specific time point is defined as the individuals/
implants that at that time are at risk of experiencing the event (e.g. revi-
sion). These are the individuals that have survived up to that point and are
those who may experience the outcome in question. An individual/
implant will leave the risk set either by experiencing the event, or when
they are censored.

The two main measures of interest in epidemiological studies are the
risk of the event occurring (probability) and the rate of its occurrence
(hazard).

T. Khan

The Kaplan-Meier!2 and life table3 are non-parametric and are the most
frequently used methods in survivorship analysis of joint replacements. A
key difference between the two is that life table methods do not require
knowledge of the date of failure and therefore the probability of an event
is calculated for fixed time points, not at the precise time an event occurs
(Fig. 1).

For Kaplan-Meier analysis, log-rank tests are used to compare survivor-
ship between different groups, and the cumulative hazard function is
often estimated non-parametrically using the Nelson-Aalen estimator.*
The Kaplan-Meier model handles loss to follow-up data more completely
than the life table method where follow-up is traditionally calculated on
an actuarial year basis. The Kaplan-Meier analysis is normally plotted as a
survival curve and is usually the preferred method for presenting long-
term follow-up data where loss to follow-up can be a problem.

A common method for regression analysis to assess the effect of different
covariates on the hazard function (or rate of revision) is the Cox propor-
tional hazards (PH) model.” The key assumption of the Cox model is pro-
portional hazards. This implies that the hazard ratio remains constant
during the course of follow-up and can be reported as a single number, i.e.
the relative risk of revision due to a risk factor (such as diabetes) is constant,
no matter the exposure time. From this assumption, it follows that an
increase or decrease between any of the groups is constant over time.
The Cox PH model is a semi-parametric method. For single-event sur-
vivorship analysis (e.g. event = revision surgery), there is a direct associa-
tion between the hazard and survival functions, therefore the Cox PH
model is able to determine the effect of individual covariates on survival.8
However, in large population-based data, the assumption of proportional
hazards may not always be reasonable as the effect of a covariate on the
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Figures 1a and 1b. Examples of Kaplan-Meier and life table graphs for sur-

vival analysis.

a) Reproduced with permission from: Kaplan-Meier survival analysis with 95% confidence
intervals shown. Reproduced with permission from Daniel J, Pradhan C, Ziaee H, Pynsent
PB, McMinn D). Results of Birmingham hip resurfacing at 12 to 15 years: a single-surgeon
series. Bone Joint | 2014;96-B:1298-1306. b) Reproduced with permission from Emerson RH,
Alnachoukati O, Barrington J, Ennin K. The results of Oxford unicompartmental knee
arthroplasty in the United States: a mean ten-year survival analysis. Bone Joint | 2016;

98-B(10 Supple B):34-40.

hazard may vary with time. For example, the relative probability of revi-
sion after cementless versus cemented hip arthroplasty may be higher in
the early period after implantation but not necessarily at five years. There
are methods of testing the proportional hazards assumption, including
graphical techniques such as plotting the ‘Schoenfeld residuals’ against
time (Fig. 2).2 Each individual for each covariate in the model has a sepa-
rate residual, and when plotting scaled residuals against time, the slope
should be zero if the proportional hazards assumption is accurate.
However, there are sophisticated methods for introducing time-variable
effects of covariates into a Cox regression model.

A crucial disadvantage of using the Cox PH model in large database
studies is that despite allowing a comparison in hazard for individuals
based on covariates (hazard ratio), it does not provide an estimate of the
underlying baseline hazard which is needed to understand the process of
the condition.
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Fig. 2 Example of plot for scaled Schoenfeld residuals against time using a
Cox PH model.

COMPETING RISKS

In survivorship analysis, competing risks are present when an individual
or implant is at risk of more than one mutually exclusive event, for exam-
ple, revision surgery and death where death is considered to be a compet-
ing risk. The occurrence of a competing event may prevent the event of
interest from occurring. By censoring individuals who have died at the
time of analysis, this alters the probability of the event of interest by
changing the number of individuals at risk. Put simply, patients who have
died are assumed to have had the same risk of having the event of interest
had they not died. It has been shown that Kaplan-Meier survivorship anal-
ysis overestimates the risk of revision arthroplasty.10

It is logical to perform an analysis that takes into account competing
risks. In arthroplasty registry studies, competing risks analysis has been
adopted by a few.'-14 In such studies, the competing risk of death has
been accounted for. However, the statistical techniques can be expanded
to account for multiple competing risks. For example, when the event of
interest is revision due to aseptic loosening, death and revision for other
indications are both competing risks.

Much of the competing risks methodology has been developed from
cancer survival models where death for any cause other than cancer is a
competing risk. However, the same methodology can be applied to
arthroplasty and other orthopaedic time-to-event data.

There are different approaches to competing risk modelling. The first
is to model the cause-specific hazards (hazard of failure due to the event
of interest given that the subject is still alive at time t) and transform these
to determine the cumulative incidence. A second approach is to model
the cumulative incidence function directly through a method proposed
by Fine and Gray.!®

Both non-parametric and semi-parametric approaches to competing
risks have been used in some arthroplasty registry studies,'.12 but a flex-
ible parametric model which avoids the assumption of proportional haz-
ards and provides a model that can easily incorporate time-dependent
effects are, thus far, not widely utilised in orthopaedic studies.

In conclusion, there are advancing approaches to survival analysis in
orthopaedics. It is important to have an understanding of techniques and
what their limitations are when interpreting the results, particularly the
results of larger epidemiological studies. Also critical is the need to adopt
appropriate methodology to provide the most accurate estimate of the



risk of an event for different groups of patients and implants — there is no
‘one size fits all” method.
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