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Aims
Machine learning (ML) holds significant promise in optimizing various aspects of total
shoulder arthroplasty (TSA), potentially improving patient outcomes and enhancing surgical
decision-making. The aim of this systematic review was to identify ML algorithms and
evaluate their effectiveness, including those for predicting clinical outcomes and those used
in image analysis.

Methods
We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials
databases for studies applying ML algorithms in TSA. The analysis focused on dataset
characteristics, relevant subspecialties, specific ML algorithms used, and their performance
outcomes.

Results
Following the final screening process, 25 articles satisfied the eligibility criteria for our
review. Of these, 60% focused on tabular data while the remaining 40% analyzed image
data. Among them, 16 studies were dedicated to developing new models and nine used
transfer learning to leverage existing pretrained models. Additionally, three of these models
underwent external validation to confirm their reliability and effectiveness.

Conclusion
ML algorithms used in TSA demonstrated fair to good performance, as evidenced by the
reported metrics. Integrating these models into daily clinical practice could revolutionize
TSA, enhancing both surgical precision and patient outcome predictions. Despite their
potential, the lack of transparency and generalizability in many current models poses a
significant challenge, limiting their clinical utility. Future research should prioritize address-
ing these limitations to truly propel the field forward and maximize the benefits of ML in
enhancing patient care.

Take home message
• Machine learning has the potential to

enhance clinical outcomes in total
shoulder athroplasty by improving
decision-making and tailoring treatment
to the patient.

• However, systematic issues regarding
transparency, replicability, and external
validation have to be resolved until

extensive clinical adoption can be
achieved.

Introduction
Recent advancements in machine learning
(ML) and the increasing availability of big
data have opened promising avenues for
optimizing orthopaedic treatments. The use
of ML techniques has become a cornerstone
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in medical research in recent years, offering a wide range
of applications that present significant opportunities in
orthopaedic surgery.1

ML, a subset of artificial intelligence (AI), can be
divided into two distinct types – unsupervised and supervised.
Unsupervised ML is used to identify patterns or clusters in
unlabelled data, such as grouping customers based on their
purchasing behaviour to design marketing campaigns. The
more popular supervised ML models, on the other hand, are
trained on labelled datasets, and the ML model then makes
predictions based on the label and the input data. Super-
vised ML can be further divided into either classification or
regression tasks. Classification is where the prediction output
can only take a limited number of values (e.g. fraudulent/not
fraudulent). In regression tasks, the ML model’s training data
is labelled with continuous data, thus predictions are on a
continuous scale too (e.g. predicting the price of a house).
Levin et al2 recently published an overview on AI in shoul-
der surgery, summarizing common AI terms and discussing
current and future applications; readers unfamiliar with AI or
ML are advised to use this article as a reference aid.

A systematic review on studies applying ML to predict
clinical outcomes within different orthopaedic disciplines
identified 18 studies exploring the efficacy of ML algorithms
in predicting clinically significant outcomes (CSOs), with all
of them utilizing the minimal clinically important difference
as a primary outcome measure.3 ML algorithms demonstra-
ted favourable performance in predicting CSOs across most
studies. This study highlighted the importance of utilizing ML
in outcomes-based research due to its capacity to enhance
prediction accuracy by discerning complex data relationships
through pattern recognition and learning.

Another systematic review focusing on shoulder
surgeries assessed the scope and validity of current clinical
AI applications.4 Investigations applying AI to shoulder surgery
predominantly centred on two key domains: 1) automated
imaging analysis encompassing tasks such as identifying
rotator cuff tears and assessing shoulder implants; and 2)
risk prediction analyses that included evaluating perioperative
complications, functional outcomes, and patient satisfaction.
The performance of models varied considerably, with the
highest area under the curve (AUC) ranging from 0.681 to a
perfect score of 1.00. Remarkably, only two studies reported
external validation of their models.

Currently, there is a noticeable gap in the literature
regarding systematic reviews that compare multiple ML
models and algorithms specifically applied to total shoulder
arthroplasty (TSA). This oversight is significant, especially
considering the rapid advancements in ML and its increasing
application in medical fields. A comprehensive review that
synthesizes the most recent findings and methodologies could
provide invaluable insights and guidance for future research
and clinical applications in TSA. The aim of this systematic
review is to identify ML algorithms pertaining to TSA, such
as models forecasting clinical outcomes after TSA or models
analyzing images. Additionally, this review seeks to evaluate
the effectiveness of these models by examining performance
metrics.

Methods
Data sources and search strategy
This study adheres to the reporting standards outlined by the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) reporting guidelines.5 The study protocol
was preregistered on PROSPERO (no. CRD42024524721). An
electronic search was performed using PubMed, EMBASE,
and the Cochrane Library including Cochrane Reviews and
Cochrane Central Register of Controlled Trials databases.
A comprehensive search strategy was designed a priori
and specifically tailored for each database. The search was
restricted to: 1) completed; and 2) human studies. We
conducted one literature search. The terms used in our search
included the following: (“shoulder arthroplasty” OR “total
shoulder arthroplasty” OR “tsa” OR “shoulder prosthesis” OR
“shoulder prothesis” OR “shoulder prostheses” OR “reverse
shoulder arthroplasty”) AND (“neural network” OR “deep
learning” OR “deep neural network” OR “machine learning” OR
“supervised learning” OR “classification algorithms”).

Selection of studies
After identification of the literature, three independent
reviewers (TS, MK, JS) each screened one-third of the abstracts
yielded to shortlist articles based on predefined exclusion
criteria. Studies were excluded if: 1) there were no origi-
nal, extractable clinical data (e.g. review articles, letters to
the editor); or 2) no full-text articles available (e.g. con-
ference proceedings, study protocols); and 3) if the work
pertained to surgeries other than TSA; or 4) did not present
model performance metrics. Subsequently, full texts were
retrieved and screened for exclusion criteria again. Finally, data
extraction was performed by the same reviewers manually
and independently using a pilot-tested data extraction form.
Information extracted included primary author name, year of
publication, primary goal of the study, primary algorithm used,
use of transfer learning and data augmentation, dataset size,
dataset split, type of validation, primary model performance
metrics, whether the tool is used in clinical practice, public
accessibility of the tool, and code sharing.

Statistical analysis
The methodological quality of all eligible studies was
assessed using the Minimum Information about CLinical
Artificial Intelligence Modeling (MI-CLAIM) checklist.6 This tool
was specifically developed for assessing ML applications in
medicine. While there are alternative quality assessment tools,
we elected to use MI-CLAIM as it focuses on critical domains
relevant to ML research, including data handling, model
evaluation, and reporting standards. The quality assessment,
however, was a secondary aim of this manuscript, intended
to provide a more structured overview. Any disagreements
pertaining to extracted data or assessment of methodologi-
cal quality between raters were resolved by discussion. As
the studies were extremely heterogeneous in terms of the
pathology examined and the outcome parameters investiga-
ted, we refrained from ranking the clinical relevance. Figure
creation was performed using the statistical software R v.
4.4.1 (R Foundation for Statistical Computing, Austria) and the
package ggplot2 v. 3.5.1.7
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Results
The initial screening process yielded a total of 111 studies; 61
articles were excluded based on the abstract and predefined
exclusion criteria. Subsequent screening of the potentially
relevant 50 full-text studies resulted in a final selection of 25
eligible publications (Figure 1).

This systematic review analyzed 25 articles published
between 2016 and 2024 that covered 9,415 medical images
and 300,204 patients (Table I). The input for the ML models
was divided into image and tabular data derived from 40%
and 60% of the articles, respectively.

The MI-CLAIM checklist analysis highlights significant
variability in how well imaging and tabular studies adhere
to the established reporting standards for ML models (Figure
2). For imaging studies, the most frequent criteria that were
unmet included the provision of model details, discussion
about data shifts, and code sharing. In contrast, imaging
studies consistently reported problem and question state-
ments, cohort characteristics, and sample representativeness.

Tabular studies exhibited a comparable trend, generally
adhering well to essential reporting elements like defining
the research problem, detailing cohort characteristics, and
describing the baseline comparisons. Similarly to the studies
involving images, the tabular studies also showed signifi-
cant deficiencies in providing detailed model information,
independence of training and test data, and code sharing.

Implant recognition
Sultan et al11 developed a model with the goal of classifying
implants from different manufacturers, which displayed an
average accuracy of 85.92%, an f1-score of 84.69%, a precision
of 85.33%, and a recall of 84.11%. In a later study, the same
group improved their model with an accuracy of 89.09%,
an f1-score of 87.94%, a precision of 89.54%, and a recall of
86.57%.12

Geng et al14 developed a ML model with a similar goal
of predicting the manufacturer and specific model of TSA
implants. Performance metrics showed an overall accuracy of
93.9% and an average precision, recall, and f1-score of 94%.

Yi et al10 aimed not only to identify the implant
manufacturer, but also to detect the presence of a TSA and
determine if the implant was configured anatomical or reverse.
The resulting model showed an AUC of 1.00 in predicting the
presence of a TSA, an AUC of 0.97 in distinguishing between
anatomical TSA (aTSA) and reverse TSA (rTSA), and an AUC of
0.86 to 1.00 in identifying specific TSA models.

Yang et al17 proposed a model that aimed to execute
three separate tasks simultaneously in one process: predicting
the side of the shoulder; distinguishing between aTSA, rTSA,
and a preoperative shoulder; and assessing the imaging view.
Their model achieved an average accuracy, precision, recall,
and f1-score of 99.1%.

Urban et al9 showed superiority of convolutional neural
networks (CNNs) over more classic ML approaches like random
forest or gradient boosting with regard to classifying the
implant manufacturer. The authors proposed a model which
was able to predict the manufacturer with an accuracy of 80%,
while more classic ML algorithms merely reached accuracies of
51% to 56%.

Kunze et al13 developed two more CNNs aimed to
classify the implant manufacturer and the exact implant type.

The first model displayed an overall accuracy of 97.1% and
an AUC of 0.99 to 1.00, discriminating between different
implant manufacturers. The second model additionally used
implant-specific details, achieving an overall accuracy of 99.1%
in detecting the implant type. Saliency maps indicate that
both proposed CNNs learn from meaningful implant-specific
features on the radiographs.

Tendon integrity
Guo et al15 used a deep CNN to automatically diagnose
supraspinatus tears from MRI data in a binary fashion (tear
or no tear). The proposed model was both internally and
externally validated, achieving respective AUC values of 0.882
and 0.921. The model’s performance was benchmarked at the
local institution. It demonstrated results comparable to those
of senior clinicians and surpassed those of junior clinicians.
However, the authors did not offer any explanations for the
model’s predictions.

Articular margin plane
Only one article included a regression task from medi-
cal imaging. Tschannen et al8 developed a comprehensive
automated model based on the random forest regression
algorithm to precisely predict coordinates of the articular
margin plane (AMP) based on CT images of the upper arm.
However, the study lacked explicit documentation regarding
the model’s performance assessment. Mean absolute errors
(MAEs) of 6.51° and 2.4 mm were reported for both the angular
and positional attributes of the AMP.

Bone density estimation
Ritter et al16 developed a model based on the support vector
machine algorithm for prediction of bone density. The authors
used a combination of clinical data and CT scans of humerus
cadavers to develop a model predicting bone density of the
proximal humerus. The model achieved an AUC of 0.83 in
predicting the surgeons’ intraoperative assessment of bone
density.

Outcome prediction
Kumar et al21,28 used a variety of models to accurately
predict internal rotation scores at various postoperative
intervals for patients undergoing aTSA and rTSA. The same
authors additionally demonstrated the effectiveness of the
XGBoost model in predicting various postoperative func-
tional outcomes.23 The model showed robust accuracy across
multiple postoperative scores and timepoints. Simmons et al31

performed an external validation of this specific tool using
patients undergoing primary aTSA or rTSA. The validation
analysis revealed that the tools’ predictions were gener-
ally accurate, with MAEs within 10% of the initial internal
validation results.

Franceschetti et al30 aimed to predict postoperative
anterior elevation following rTSA. A total of 28 features from
105 patients treated in two clinics were used as input to the
model. The support vector regression algorithm demonstrated
the best performance with a MAE of 12°.

In a retrospective cohort study of 472 patients
with primary glenohumeral osteoarthritis undergoing TSA,
McLendon et al24 employed different ML models to predict
postoperative improvements measured with the American
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Shoulder and Elbow Surgeons score. The best performing
model used baseline functional scores and morphological
variables, achieving the highest accuracy, with probability
values of 0.94 for minimal, 0.95 for moderate, and 0.94 for
significant improvement.

Devana et al26  developed several models with the
goal to identify patients at risk of complications or
readmissions within 30 days post surgery. Five different ML
algorithms were compared. The XGBoost model exhibited
superior efficacy, with an AUC of 0.681 in predicting
the occurrence of major postoperative complications or
readmissions within 30 days.

Karnuta et al19 compared the effectiveness of artificial
neural networks (ANNs) to conventional statistical approaches
in predicting complications after aTSA and rTSA. The authors
focused on predicting prolonged duration of stay, discharge
disposition, and inpatient expenses using data from over
100,000 patients. The ability of ANNs to provide accurate
forecasts for these outcomes following TSA was demonstra-
ted, with accuracies of 91.8%, 73.1%, and 76.5%, respectively.
Results demonstrated that ANNs have the capacity to handle
complicated data interactions, providing more predictive
power than traditional statistical models.

Oeding et al29 explored the risk of early dislocation
leading to revision surgery within three months following
rTSA. The proposed model, employing the XGBoost algorithm,
was able to accurately identify rare dislocation events with a
recall of 84%.

Gowd et al18 used data from the American Col-
lege of Surgeons–National Surgical Quality Improvement
Program to develop predictive models for the occurrence
of adverse events following TSA. The study analyzed data
from 17,119 cases. Preoperative and intraoperative factors,
including patient demographics and health status, were
considered. Random forest achieved the highest accuracy
in predicting any adverse event, while logistic regression
provided the highest AUC for this outcome.

Patient selection
Lopez et al22 developed models to assist healthcare provid-
ers in preparing adequate postoperative care and support
arrangements. They applied boosted decision trees and ANNs
to develop predictive models from a large national surgical
registry with 21,544 patients predicting non-home discharge
following TSA. The best performing models were ANNs
reaching an overall accuracy of 92.5%.

Biron et al20 developed a clinical decision support tool
that helps to select patients for outpatient TSA based on
length of stay. They applied demographic and comorbidity
data from a multicentre study to a random forest model to
predict the length of stay in a binary fashion, achieving an AUC
of 0.77.

Polce et al25 developed a tool to predict patient
satisfaction two years after TSA based on demographic and
patient-specific factors, as well as whether an aTSA or rTSA
is implanted. The tool was initially developed based on

Fig. 1
Of the 25 excluded articles, the article listed under “other reasons” was an unsuitable evaluation of an existing prediction model’s fairness based on
ethnicity, age, and sex.
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Table I. Overview of the most important characteristics of all 25 eligible studies selected for systematic review.

First author Primary goal
Primary
algorithm

Transfer
learning

Data
augmentation Dataset size

Dataset
split Validation

Primary
metric

Tool used in
clinical
practice

Public
accessibili
ty of tool

Code policy
available

Imaging*

Tschannen et al8
Articular margin
plane prediction RF regression No Yes 72 images N/A Internal

MAE

2.4 mm,
6.5° No No No

Urban et al9
Implant
recognition CNN Yes Yes 597 images N/A Internal

ACC
80.4% No In part N/A

Yi et al10
Implant
recognition CNN Yes Yes 482 images 70/10/20 Internal

AUC

0.86 to
1.0 No N/A N/A

Sultan et al11
Implant
recognition CNN Yes Yes 538 images 90/10 Internal

ACC
85.92% No

On
request On request

Sultan et al12
Implant
recognition CNN Yes Yes 597 images 90/2/8 Internal

ACC
89.09% No Yes No

Kunze et al13
Implant
recognition CNN Yes Yes

3,060
images 80/20 Internal

ACC
97.1% No No Yes

Geng et al14
Implant
recognition CNN Yes No 696 images 70/30 Internal

ACC
93.9% No No No

Guo et al15
Tendon integrity
recognition CNN No Yes 770 images 72/19/9 External

ACC

82% to
87% No

On
request On request

Ritter et al16
Bone density
estimation SVM No No 300 images N/A External

ACC

87% No No No

Yang et al17
Implant
recognition CNN Yes Yes

2,303
images 80/20 Internal ACC 95% No No No

Tabular*

Gowd et al18

Prediction of
postop
complications RF No No 17,119 ptns 80/20 Internal

ACC
95.4% No No No

Karnuta et al19 Cost prediction ANN No No 111,147 ptns 70/10/20 Internal
ACC
76.5% No No Yes

Biron et al20

Identification of
ptns suited for
outpatient
treatment RF No No 4,500 ptns 70/30 Internal

AUC

0.77 No No No

Kumar et al21
Prediction of
postop outcome WD Yes No 4,782 ptns 66.7/33.3 Internal

ACC >
85% Yes Yes No

Lopez et al22

Prediction of
non-home
discharge ANN No No 21,544 ptns 80/20 Internal AUC 0.85 No N/A N/A

Kumar et al23
Prediction of
postop outcome XGB No No 5,774 ptns 66.7/33.3 Internal

ACC >
82% No N/A N/A

McLendon et al24
Prediction of
postop outcome N/A No No 300 ptns N/A Neither

Recall

84% to
95% N/A N/A N/A

Polce et al25
Prediction of
postop outcome SVM No No 413 ptns 80/20 Internal

AUC

0.8 No Yes No

Devana et al26

Prediction of
postop
complications XGB No No 2,799 ptns 80/20 Internal

AUC

0.68 No No No

Gowd et al27 Cost prediction
Gradient
boosting trees No No 49,354 ptns 80/20 Internal AUC 0.87 No N/A N/A

Kumar et al28
Prediction of
postop outcome WD Yes No 6,468 ptns 66.7/33.3 Internal

Mean
MAE 1.09 Yes Yes N/A

Oeding et al29

Prediction of
postop
complications XGB No No 74,697 ptns 80/20 Internal AUC 0.71 No No No

(Continued)
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16 predictive variables and comparing different ML algo-
rithms. The best performing algorithm was the support vector
machine, achieving an AUC of 0.8 in detecting patient satisfac-
tion in a binary fashion.

Financial implications
Gowd et al’s27 study applied a combination of ML techniques
to predict total healthcare costs during the 90-day perioper-
ative period. Findings based on the dataset of 49,354 cases
showed an average initial surgery cost of USD $19,364. Cases
were considered high-cost if they exceeded USD $32,883,

(Continued)

First author Primary goal
Primary
algorithm

Transfer
learning

Data
augmentation Dataset size

Dataset
split Validation

Primary
metric

Tool used in
clinical
practice

Public
accessibili
ty of tool

Code policy
available

Franceschetti et
al30

Prediction of
postop outcome SVR No No 105 ptns 70/30 Internal

MAE
11.6° No No No

Simmons et al31

External
validation of
CDST N/A No No 243 ptns N/A External

10%
worse to
31.6%
better Yes Yes No

Eghbali et al32

Prediction of
glenohumeral
joint forces CNN No No

959
synthetic
ptns 85/15 Internal

MAE

11.1 N No No No

*Studies were categorized based on source data stemming from radiological images (i.e. imaging study) or patient (ptn) data (i.e. tabular study).
ACC, accuracy; ANN, artificial neural network; AUC, area under curve; CDST, clinical decision support tools; CNN, convolutional neural network; MAE, mean
absolute error; N/A, not available; postop, postoperative; RF, random forest; SVM, support vector machine; SVR, support vector regression; WD, wide and
deep; XGB, extreme gradient boosting.

Fig. 2
Traffic light plots highlighting the methodological quality of all 25 eligible studies based on the Minimum Information about CLinical Artificial
Intelligence Modeling (MI-CLAIM) checklist. All studies were categorized as either imaging (left) or tabular (right) studies based on data sourced from
radiological images and patient data, respectively. Each row lists a specific criterion of the checklist, while each column corresponds to an individual
study. Green dots indicate that the study met the specified criterion, while red dots signify that the study did not adhere to the indicated criterion.
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which represents more than one SD above the average cost.
Gradient boosting trees were the most effective predictive
model, showing an AUC of 0.85.

Karnuta et al19 used ANNs to predict the length of stay,
discharge dispositions, and inpatient charges after TSA, with
AUCs ranging from 0.71 to 0.89, using a publicly availa-
ble dataset with sociodemographic data and geographical
location comprising 111,147 patients.

Biomechanics
Eghbali et al32 developed a ML model to predict glenohumeral
joint forces in TSA, using a dataset of 959 virtual subjects
derived from clinical registries and musculoskeletal models.
The fully connected deep-learning model exhibited high
accuracy in predicting joint forces across various abduction
angles. The model achieved coefficients of determination
between 0.97 and 0.98.

Discussion
The aim of this systematic review was to evaluate the
effectiveness of ML algorithms in TSA, specifically those used
for predicting clinical outcomes and image analysis.

Among the studies included in our review that utilize
imaging data, the majority employ deep CNNs (Table I). This
preference is understandable, as these algorithms do not
rely on manually engineered features, instead performing
feature extraction autonomously. However, achieving optimal
performance with deep-learning algorithms such as CNNs
typically requires large datasets, unless a pre-trained model
is used. In this case, the pre-trained model can be adapted
to the available training data and still perform well, even
if the available training data are sparse. Another advantage
of transfer learning is faster training, as most of the learn-
ing has already been done before.33 Most of the studies
included in this review that used images take advantage of
transfer learning, especially studies with CNNs. In addition, it
is easier to perform data augmentation with images than with
tabular data, which can easily be done by any combination
of rotating and cropping the images or adjusting brightness
and contrast, greatly increasing the size of the dataset used
to train the model, resulting in better performance. On the
other hand, deep learning can be computationally intensive
and may not be possible without the right hardware. In the
studies included in this review that utilize tabular data, deep
learning is notably less prevalent. This is expected, as shallow
ML algorithms such as random forests and XGBoost have
demonstrated superior performance compared to deep-learn-
ing algorithms when applied to the same tabular datasets.34–36

These models do not require large datasets, a long training
time, or high computational power either, which makes them
more accessible to use. However, data augmentation proved
to be more complicated in tabular data. Unlike augment-
ing images, where rotations or other image transformations
conserve the underlying meaning, new data points in a
tabular dataset cannot simply be generated without poten-
tially changing the underlying relationships of the features in
the dataset or creating unrealistic combinations. This might
explain why none of the studies in our review that used
tabular datasets employed data augmentation.

Our review demonstrated a significant gap in the
transparency and replicability of studies employing ML

techniques in the field of TSA. The lack of detailed model
reporting, data, and code availability in both imaging and
tabular studies inherits a risk of compromising scientific rigour
in limiting the ability to reproduce and verify results. Further,
the lack of external validation in many studies is a notable
issue, raising doubts about the applicability of these models
in different clinical environments. The widespread absence of
code sharing highlights a significant challenge in the field of
orthopaedic surgery, where concerns over proprietary rights
and issues surrounding open science can impede collaborative
advancement and innovation in ML applications.

ML models possess the potential for numerous
clinical applications in the field. For instance, they might
become important in determining whether to do inpatient
or outpatient TSA.20,22 Models recommending non-home
discharge (e.g. rehabilitation facilities) play an important role
in ensuring appropriate postoperative care. They can be
particularly beneficial for patients at risk for complications or
requiring more extensive postoperative care. This approach
not only protects patient health but also optimizes the use
of healthcare resources, reducing the number of prevent-
able hospital readmissions. The ability to predict patient
satisfaction based on preoperative characteristics could also
significantly impact decisions regarding the suitability of an
outpatient surgery, ultimately improving patient satisfaction
and results.25

Moreover, predicting potential complications and
unplanned readmissions can mitigate unforeseen costs,
leading to more financially stable operations within health-
care institutions and potentially facilitating better negotiations
with insurance providers.

A critical endpoint that most studies have overlooked
is pain. In fact, only two publications focused on building a
ML model for predicting pain following TSA,21,23 which most
likely is explained by the fact that pain is multifactorial and
highly subjective. Future initiatives should focus on filling this
gap, perhaps by allowing healthcare practitioners to conduct a
comprehensive assessment of outcomes, including postopera-
tive pain.

Recent research utilizing ML techniques has heavily
focused on image analysis for implant detection using deep
learning. While these models are technically sophisticated,
their practical utility in clinical settings is limited due to the
narrow variety of implants used. For instance, the variability
in the types of implants used makes these models applica-
ble only to providers who use the exact same selection of
implants. Identifying conditions such as fractures, dislocations,
and infections would be a more clinically valuable applica-
tion. In addition, broadening ML to cover the prediction of a
wider spectrum of postoperative outcomes could be of extra
value. These outcomes can include prediction of complica-
tions, postoperative pain, patient satisfaction, and, to a lesser
extent, postoperative function.

Several limitations should be considered before
interpreting the results of this systematic review. One
limitation is that only one critical appraisal tool was used to
quantify the quality of studies. Furthermore, screening, data
extraction, and critical appraisal were only conducted in a
single fashion without control by another reviewer to offset
potential mistakes; areas of inconsistency were, however,
discussed among the authors.
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For clinicians, effectively integrating ML can transform
the field of TSA by streamlining decision-making processes,
crafting personalized treatment plans, managing patient
expectations, and enhancing the accuracy of predicting
patient outcomes. However, to fully realize these benefits it
is important to establish a robust validation framework. This
approach is foundational to advancing personalized medicine,
which aims to tailor healthcare strategies to individual patient
profiles, optimizing treatment efficacy and patient satisfaction.
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