The use of tapered junctions in primary hip arthroplasty has excellent results. Large heads are being used to mitigate dislocation and optimize range of motion. The prevalence of larger heads, coupled with recent findings regarding corrosion artifacts at tapered surfaces, has spurred growing interest when considering revision rates. The purpose of this study was to determine if correlations exist between severity of corrosion artifacts and head size, head offset, time Retrieved hip arthroplasty devices with CoCrMo or oxidized zirconium (OxZr) heads were investigated for corrosion artifacts in this study. Female tapered surfaces were scored independently by a panel according to the Goldberg system for assessment of corrosion. Exclusion criteria included less than 1 week INTRODUCTION:
METHODS:
Conventional screws achieve sufficient insertion torque in healthy bone. In poor bone screw stripping can occur prior to sufficient torque generation. It was hypothesized that a screw with a larger major/minor diameter ratio would provide improved purchase in poor bone as compared to conventional screws. We evaluated the mechanical characteristics of such a screw using multiple poor bone quality models. Testing groups included: conventional screws, osteopenia screws used in bail-out manner (ie, larger major/minor diameter screws inserted into a hole stripped by a conventional screw), and osteopenia screws used in a preemptive manner (ie, no screw stripping occurrence). Stripping Torque: Screws were inserted through standard straight plates into a low density block of foam with a predrilled hole. Stripping torque was defined as maximum insertion torque reached by the screw before the screw began to spin freely in the foam.Introduction
Methods