Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 260 - 260
1 Dec 2013
Cartner J Aldinger P Fessenden M Li C
Full Access

INTRODUCTION:

The use of tapered junctions in primary hip arthroplasty has excellent results. Large heads are being used to mitigate dislocation and optimize range of motion. The prevalence of larger heads, coupled with recent findings regarding corrosion artifacts at tapered surfaces, has spurred growing interest when considering revision rates. The purpose of this study was to determine if correlations exist between severity of corrosion artifacts and head size, head offset, time in vivo, orhead material in a 15 year retrieval database.

METHODS:

Retrieved hip arthroplasty devices with CoCrMo or oxidized zirconium (OxZr) heads were investigated for corrosion artifacts in this study. Female tapered surfaces were scored independently by a panel according to the Goldberg system for assessment of corrosion. Exclusion criteria included less than 1 week in vivo, ceramic taper, and modular proximal stem sleeves. Evaluation was performed on only stem/head taper junctions. SEM analyses and a newly developed method of vertical straightness deviation (VSD) were used on a subset of devices as an additional measure to quantify corrosion within the taper contact region by measuring depth of material loss.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 57 - 57
1 Sep 2012
Cartner J Hartsell Z Cooper P Ricci W Tornetta III P
Full Access

Introduction

Conventional screws achieve sufficient insertion torque in healthy bone. In poor bone screw stripping can occur prior to sufficient torque generation. It was hypothesized that a screw with a larger major/minor diameter ratio would provide improved purchase in poor bone as compared to conventional screws. We evaluated the mechanical characteristics of such a screw using multiple poor bone quality models.

Methods

Testing groups included: conventional screws, osteopenia screws used in bail-out manner (ie, larger major/minor diameter screws inserted into a hole stripped by a conventional screw), and osteopenia screws used in a preemptive manner (ie, no screw stripping occurrence).

Stripping Torque: Screws were inserted through standard straight plates into a low density block of foam with a predrilled hole. Stripping torque was defined as maximum insertion torque reached by the screw before the screw began to spin freely in the foam.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 71 - 71
1 Mar 2010
Cartner J
Full Access

Introduction: Conventional cancellous screws have proven purchase in healthy bone, but may be prone to loosening in osteoporotic bone. Locking screws have become a popular choice to combat loosening. A new screw design has optimized thread form to gain better purchase into poor quality bone. The purpose of this study was to evaluate the maximum stripping torque and pull-out strength of the PERI-LOCTM 5.0mm Osteopenia Bone Screw using an osteopenic model.

Methods: Stripping Torque: PERI-LOCTM 5.0mm Osteopenia Bone Screws were inserted through a One-Third Tubular B-plate into a pre-drilled pilot hole to a depth of 20mm. Rotational loading was applied manually using a hex driver until torque reached a peak value. The maximum torque value due to screw head contact with the plate was measured using a torque-meter and denoted as the stripping torque. This same procedure was used for TC-100TM 4.0mm Cancellous Bone Screws, which were inserted through a TC-100TM Standard Tubular Plate. Pull-Out Strength: PERI-LOCTM 5.0mm Osteopenia Bone Screws were inserted to a depth of 20 mm into an osteopenic model. Axial pull-out was then conducted on a MTS testing frame by applying a tensile load along its longitudinal axis at a rate of 0.2 in/min. The maximum pull-out force was recorded. This same procedure was used for TC-100TM 4.0mm Cancellous Bone Screws. The test set-up is shown in Figure 1.

Discussion: The PERI-LOCTM 5.0mm Osteopenia Bone Screws showed a 34% increase in stripping torque and a 40% increase in pull-out strength (p < < 0.01 at รก = 0.05 in both instances) as compared to clinically successful bone screws.

Conclusions: When tested in an osteopenic bone model, the PERI-LOCTM 5.0mm Osteopenia Bone Screw provided superior stripping torque and pull-out strength as compared to conventional cancellous bone screws. The increased torque generation during insertion of PERI-LOCTM 5.0mm Osteopenia Bone Screws provides better fracture reduction, as compared to conventional screws. These findings indicate that the use of the improved thread design is advantageous in poor quality bone.