Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 29 - 29
1 Apr 2019
Soares dos Santos M Bernardo R Ramos A Ferreira JAF Simões JA
Full Access

Introduction

An increasing trend in the incidence of primary and revision bone replacements has been observed throughout the last decades, mainly among patients under 65 years old.10-year revision rates are estimated in the 5–20% range, mainly due to peri-implant bone loss. Recent advances allow the design of implants with custom-made geometries, nanometer-scale textured surfaces and multi-material structures. Technology also includes (bio)chemical modifications of the implants' surfaces. However, these approaches present significant drawbacks, as their therapeutic actuations are unable to: (1) perform long-term release of bioactive substances, namely after surgery; (2) deliver personalized stimuli to target bone regions and according to bone-implant integration states.

The Innovative Concept

Here we propose the design of instrumented active implants with ability to deliver personalized biophysical stimuli, controlled by clinicians, to target regions in the bone-implant interface throughout the patients' lifetime. The idea is to design bone implants embedding actuators, osseointegration sensors, wireless communication and self-powering systems. This work proposes an advanced therapeutic actuator for personalized bone stimulation, and a self-powering system to electrically supply these advanced implants.