An increasing trend in the incidence of primary and revision bone replacements has been observed throughout the last decades, mainly among patients under 65 years old.10-year revision rates are estimated in the 5–20% range, mainly due to peri-implant bone loss. Recent advances allow the design of implants with custom-made geometries, nanometer-scale textured surfaces and multi-material structures. Technology also includes (bio)chemical modifications of the implants' surfaces. However, these approaches present significant drawbacks, as their therapeutic actuations are unable to: (1) perform long-term release of bioactive substances, namely after surgery; (2) deliver personalized stimuli to target bone regions and according to bone-implant integration states. Here we propose the design of instrumented active implants with ability to deliver personalized biophysical stimuli, controlled by clinicians, to target regions in the bone-implant interface throughout the patients' lifetime. The idea is to design bone implants embedding actuators, osseointegration sensors, wireless communication and self-powering systems. This work proposes an advanced therapeutic actuator for personalized bone stimulation, and a self-powering system to electrically supply these advanced implants.Introduction
The Innovative Concept