Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 101 - 101
14 Nov 2024
Oliveira SD Miklosic G Guicheux J Visage CL D'este M Helary C
Full Access

INTRODUCTION

Intervertebral disc (IVD) degeneration is not completely understood because of the lack of relevant models. In vivo models are inappropriate because animals are quadrupeds. IVD is composed of the Nucleus Pulposus (NP) and the Annulus Fibrosus (AF), an elastic tissue that surrounds NP. AF consists of concentric lamellae made of collagen I and glycosaminoglycans with fibroblast-like cells located between layers. In this study, we aimed to develop a novel 3D in vitro model of Annulus Fibrosus to study its degeneration. For this purpose, we reproduced the microenvironment of AF cells using 3D printing.

METHOD

An ink consisting of dense collagen (30 mg.mL-1) and tyramine-functionalized hyaluronic acid (THA) at 7.5 mg.mL-1 was first designed by modulating pH and [NaCl] in order to inhibit the formation of polyionic complexes between collagen and THA. Then, composite inks were printed in different gelling baths to form collagen hydrogels. Last, THA photocrosslinking using eosin and green light was performed to strengthen hydrogels. Selected 3D printed constructs were then cellularized with fibroblasts.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 83 - 83
1 Nov 2021
Nativel F Smith A Marquis M Renard D Gauthier O Vinatier C Rieux AD Guicheux J Visage CL
Full Access

Introduction and Objective

Osteoarthritis (OA) is the most common inflammatory and degenerative joint disease. Mesenchymal Stromal Cells (MSCs), with their chondro-protective and immune-regulatory properties, have been considered as a new approach to treat OA. Considering the risk of cell leakage outside the articular space and the poor survival rate after intra-articular (IA) injection, we hypothesized that cell encapsulation in cytoprotective hydrogels could overcome these limitations and provide cells with a suitable 3D microenvironment supporting their biological activity. We previously generated micromolded alginate particles (diameter 150 μm) and demonstrated the long-term viability of microencapsulated MSCs isolated from human adipose tissue (hASCs). Encapsulated cells maintained their in vitro ability to sense and respond to a pro-inflammatory environment (IFN-γ/TNF-α or synovial fluids from OA patients) by secreting PGE2, IDO, HGF and TGF-β. In this study, we evaluated the anti-OA efficacy of these microencapsulated hASCs in a post-traumatic OA model in rabbits.

Materials and Methods

OA was surgically induced by anterior cruciate ligament transection (ACLT)-mediated destabilization of the right knee in rabbits (n=24). Eight weeks after surgery, destabilized joints were injected (IA, 26G needle) with 200 μL of either PBS, blank microparticles, non-encapsulated or microencapsulated cells (5×105 cells). Six weeks after injection, rabbits were euthanized and all destabilized (right) and sham-operated (left contralateral) joints were dissected and analyzed for OA severity. Tibial subchondral bone histomorphometric parameters were measured by quantitative micro-computed tomography (micro-CT). Histological sections of samples were analyzed after Safranin-O staining and quantitatively assessed according to a modified Osteoarthritis Research Society International (OARSI) scoring system. Immunohistochemical detection of NITEGE was performed to assess the extracellular matrix degradation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 93 - 93
1 Nov 2018
Frapin L Clouet J Henry N Chedeville C Guicheux J Visage CL
Full Access

The recent description of progenitor/stem cells in degenerated intervertebral discs (IVDs) raised the possibility of harnessing their regenerative capacity for endogenous repair. The aim of this work is to develop an intradiscal polysaccharide microbead-based delivery system for the sequential release of chemokines and nucleopulpogenic factors. This delivery system would sequentially contribute to 1) the recruitment of resident progenitors (CXCL12 or CCL5), 2) the differentiation of the mobilized progenitors (TGF-β1 and GDF5), and 3) the subsequent regeneration of NP. To determine the effects of chemokines on in vitro cell recruitment, human mesenchymal stem cells (MSC) were cultured in Transwells for 4h, with or without CXCL12 or CCL5. In parallel, pullulan microbeads (PMBs) (100µm) were prepared by a simultaneous crosslinking protocol coupled to a water-in-oil emulsification process. Freeze-dried PMBs were loaded with biological factors then release assays were performed at 37°C for 21 days and supernatant concentrations were measured by ELISA. As compared to untreated MSC, MSC migration was improved with a 3.9 (CXCL12) and 7.5 (CCL5) fold increase, respectively. All factors were successfully adsorbed on PMBs and a burst release within the 1st day was observed. At day 7, 27.5% and 83% of CXCL12 and CCL5 were released, respectively and at day 21, 20% and 100% of TGF-β1 and GDF5 were released, respectively. Currently, released cytokine bioactivity is being analysed and an ex vivo ovine IVD model is developed to determine the repair potential of this controlled release approach.