Nearly a quarter of screws cause damage during insertion by stripping the bone, reducing pullout strength by over 80%. Studies assessing surgically achieved tightness have predominately shown that variations between individual surgeons can lead to underpowered investigations. Further to the variables that have been previously explored, several basic aspects related to tightening screws have not been evaluated with regards to how they affect screw insertion. This study aims to identify the achieved tightness for several variables, firstly to better understand factors related to achieving optimal intraoperative screw purchase and secondly to establish improved methodologies for future studies. Two torque screwdrivers were used consecutively by two orthopaedic surgeons to insert 60 cortical, non-locking, stainless-steel screws of 3.5 mm diameter through a 3.5 mm plate, into custom-made 4 mm thick 20 PCF sheets of Sawbone, mounted on a custom-made jig. Screws were inserted to optimal tightness subjectively chosen by each surgeon. The jig was attached to a bench for vertical screw insertion, before a further 60 screws were inserted using the first torque screwdriver with the jig mounted vertically, enabling horizontal screw insertion. Following the decision to use the first screwdriver to insert the remaining screws in the vertical position for the other variables, the following test parameters were assessed with 60 screws inserted per surgeon: without gloves, double surgical gloves, single surgical gloves, non-sterile nitrile gloves and, with and then without augmented feedback (using digitally displayed real-time achieved torque). For all tests, except when augmented feedback was used, the surgeon was blinded to the
Introduction. Loosening of the baseplate is one of the most common causes of failure in Reverse Shoulder Arthroplasty. To allow osteo-integration to occur and thus provide long-term stability, initial screws fixation plays a pivotal role. In particular, tightening torque and force of nonlocking screws are two parameters that are considered to have a clear impact on implant stability, yet the relation is not fully understood. For this reason, this study aims to define an experimental set-up, to measure force and torque in artificial bone samples of different quality, in order to estimate ranges of optimal surgical values and give guidelines to maximize screw fixation and therefore initial implant stability. Methods. A custom-made torque sensor (Figure 1a) was built and calibrated using a lever deadweight system. To measure the compression force generated by the screw head, three thin FlexiForce sensors (Tekscan, South Boston, US) were enclosed between two 3D printed plates with a central hole to allow screw insertion (Figure 1b). The tightening force, represented by the sum of the three sensors, was calibrated using a uniaxial testing machine (Zwick/Roell, Ulm, Germany). Multiple screw lengths (26mm, 32mm and 47mm) were selected in the protocol. Synthetic bone blocks (Sawbones; Malmö, Sweden) of 20 and 30 PCF were used to account for bone quality variation. To evaluate the effect of a cortical bone layer, for each density three blocks were considered with 0 mm (no layer), 1.5 mm and 3 mm of laminate foam of 50 PCF. The holes for the screws were pre-drilled in the same way as in the operation room. For each combination of screw dimensions and bone quality, ten measurements were performed by acquiring the signal of the
Introduction. Self tapping bone screw has been widely used in the fixation of Arthroplasty implants and bone graft. But the unwanted screw or driver breakage can be a direct result of excessive driving torque due to the thread cutting resistance. Previous studies showed that bone drill bit cutting rake angle was a critical factor and was inversely related to the bone cutting efficiency. 1, 2, 3, 4. (Figure 1) However to date there was no data for how the rake angle could influence the performance of self tapping bone screw. The purpose of this study was to investigate the torque generated by the self tapping cortical screw in simulated bone insertion as a function of the screw tip cutting flute rake angle. Methods. Two 5 mm thick BM5166 polyurethane block were stacked together and drilled through with 2.5mm diameter holes. Five 30mm long 3.5 mm diameter Ti6AL4V alloy self tapping cortical screws with 0°rake angle cutting flutes (Figure 2) were inserted in the holes and driven by the spanner attached to the test machine (Z5.0TN/TC-A-10) with a displacement control of 3 revolutions/min and 30N constant axial loading. The screws were driven into the stacked polyurethane block for 8mm depth. The maximum driving torque was recorded. Procedure was repeated for five same screws but with 7° rake angle cutting flutes. (Figure 2) The driving torqueses were compared. Student t test was performed with confidence level of 95% was assumed. Results. The average