Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 14, Issue 2 | Pages 143 - 154
25 Feb 2025
Bühler D Hilpert M Barbero A Müller AM Müller SA Martin I Pelttari K

Aims. Our aim was to investigate occurrence of senescent cells directly in tendon tissue biopsies from patients with chronic shoulder tendinopathies, and to correlate senescence with Enhancer of zeste 2 (EZH2) expression, the functional subunit of the epigenetic master regulator polycomb repressive complex. Methods. Human proximal long head of biceps tendons from patients with different chronic shoulder pathologies (n = 22), and controls from patients with humerus fracture (n = 6) and pathology (n = 4), were histologically scored for degeneration and analyzed for gene and protein expression of tendon specific factors, senescence markers, and EZH2. Tissues were further exposed to senotherapeutic compounds and the USA Food and Drugs Administration-approved selective EZH2 inhibitor EPZ-6438 and their senescence-associated secretory phenotype (SASP) assessed. Results. Expression of senescence markers (CDKN2A/p16, CDKN2D/p19) and EZH2 was significantly higher in tendinopathies compared to fracture or healthy tissue controls and positively correlated with the degree of tissue degeneration. Immunofluorescent stainings demonstrated colocalization of p16 and p19 with EZH2 in tenocytes. Treatment of tendon biopsies with EPZ-6438 reduced secretion of a panel of SASP factors, including interleukin-6 (IL6), IL8, matrix metalloproteinase-3 (MMP3) or GRO1, similarly to the senotherapeutic compound AG490. Conclusion. We demonstrate that senescence traits accumulate in pathological tendon tissues and positively correlate with tissue degeneration. Increased expression of CDKN2A/p16 and CDKN2D/p19 coincides with EZH2 expression, while its inhibition decreased the secretion of SASP factors, indicating a possible regulatory role of EZH2 in tenocyte senescence in tendinopathies. Reduction of cellular senescence, e.g. with EPZ-6438, opens ways to new potential therapeutic approaches for enhancing regeneration in chronic tendinopathies. Cite this article: Bone Joint Res 2025;14(2):143–154


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 160 - 165
1 Feb 2016
Farrier AJ C. Sanchez Franco L Shoaib A Gulati V Johnson N Uzoigwe CE Choudhury MZ

The ageing population and an increase in both the incidence and prevalence of cancer pose a healthcare challenge, some of which is borne by the orthopaedic community in the form of osteoporotic fractures and metastatic bone disease. In recent years there has been an increasing understanding of the pathways involved in bone metabolism relevant to osteoporosis and metastases in bone. Newer therapies may aid the management of these problems. One group of drugs, the antibody mediated anti-resorptive therapies (AMARTs) use antibodies to block bone resorption pathways. This review seeks to present a synopsis of the guidelines, pharmacology and potential pathophysiology of AMARTs and other new anti-resorptive drugs.

We evaluate the literature relating to AMARTs and new anti-resorptives with special attention on those approved for use in clinical practice.

Denosumab, a monoclonal antibody against Receptor Activator for Nuclear Factor Kappa-B Ligand. It is the first AMART approved by the National Institute for Health and Clinical Excellence and the US Food and Drug Administration. Other novel anti-resorptives awaiting approval for clinical use include Odanacatib.

Denosumab is indicated for the treatment of osteoporosis and prevention of the complications of bone metastases. Recent evidence suggests, however, that denosumab may have an adverse event profile similar to bisphosphonates, including atypical femoral fractures. It is, therefore, essential that orthopaedic surgeons are conversant with these medications and their safe usage.

Take home message: Denosumab has important orthopaedic indications and has been shown to significantly reduce patient morbidity in osteoporosis and metastatic bone disease.

Cite this article: Bone Joint J 2016;98-B:160–5.