Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 463 - 463
1 Nov 2011
Amadi HO Wallace AL Hansen UN Bull AMJ
Full Access

Introduction: Classical studies have defined axes from prominent scapular landmarks that have been used to synthesise many applications. The morphology of the scapula is however known to be highly variable between individuals1,2,3. This introduces significant variability on the use of these classical axes for various clinical applications. Also, some of the literatureapplied landmarks were highly dependant on the presence of pathology, thus introducing more variability in the products they parented. This limits accuracy in inter-subject comparisons from such applications. Therefore there is a need to identify and define pathology-insensitive anatomical landmarks that are less variable between individuals than the variability of the overall scapular shape. The aim of this study was to define more scapular axes from clearly identifiable landmarks, analysing these and other classical definitions for the best axis that minimizes variability and is closely related to the scapular clinical frame of reference.

Materials and Method: Fourteen different axes of new and classical definitions from clearly identifiable landmarks were quantified by applying medical images of 21 scapulae. The orientations of the quantified axes were calculated. The plane of the blade of the scapula was defined, bounded by the angulus inferior4, the spine/medial border intersection5 and the most inferolateral point of the infra-glenoid tubercle. This was applied to grade the alienation of the quantified axes from the scapular blade. The angular relationships between individual axes of a spcapula were quantified, averaged over the 21 specimens and their standard deviations (SD) applied to grade the sensitivity of each axis to interscapular variations in the others. The volume of data required to define an axis (VDA) was noted for its dependency on pathology. These three criteria were weighted according to relative importance such that

axes bearing 10° or more from the blade deviated significantly and were eliminated;

insensitivity to scapular morphological variations based on the smallest SD and axes applicability in pathology based on VDA of the remaining axes were graded for the final result.

Results: A least square line through the centre of the spine root was the most optimal medio-lateral axis. The normal to the plane formed by the spine root line and a least square line through the centre of the lateral border ridge was the most optimal antero-posterior axis.

Conclusion: These body-fixed axes are closely aligned to the cardinal planes6 in the anatomical position and thus are clinically applicable, specimen invariant axes that can be used in generalised and patient-specific kinematics modelling.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 557 - 564
1 Apr 2009
Rumian AP Draper ERC Wallace AL Goodship AE

An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons.

The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1586 - 1586
1 Nov 2005
Wallace AL


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1586 - 1586
1 Nov 2005
Wallace AL


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 168 - 168
1 Apr 2005
Balendran R Wallace AL
Full Access

Aim Radio-frequency electrical energy and mechanical shaving are often used for resection of soft tissues during arthroscopic reconstructive procedures. The effects of these techniques on tendon are not yet clearly understood. This study compared the effects of radio-frequency ablation with mechanical shaving on ovine tendon, using histological and ultra-structural techniques.

Methods: A single cut using a scalpel blade was used to create a standardised reproducible lesion in 12 freshly harvested ovine infraspinatus tendons. Each lesion was then subjected to either bipolar radio-frequency ablation or mechanical shaving. Specimens were then processed for light and electron microscopy.

Results: The radio-frequency treated samples showed an area of coagulative necrosis with an average diameter of 2 mm around the lesion. Conversely, the shaved samples showed viable cells up to the edges of the lesion. These findings were supported by ultra-structural appearances, which showed preservation of tendon architecture in shaved samples and widespread denaturation of the tendon matrix with loss of fibrillar structure in the radio-frequency treated samples.

Conclusion: These results indicate that thermal resection of tendon causes an immediate additional 2 mm area of tissue necrosis which is not present after mechanical shaving. These findings may have implications for the success of arthroscopic debridement and tendon repair procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 594 - 599
1 May 2003
Reilly P Amis AA Wallace AL Emery RJH

Differential strain has been proposed to be a causative factor in failure of the supraspinatus tendon. We quantified the strains on the joint and bursal sides of the supraspinatus tendon with increasing load (20 to 200 N) and during 120° of glenohumeral abduction with a constant tensile load (20 to 100 N).

We tested ten fresh frozen cadaver shoulders on a purpose-built rig. Differential variable reluctance extensometers allowed calculation of the strain.

Static loading to 100 N or more increased strains on the joint side significantly more than on the bursal side. During glenohumeral abduction an increasing and significant difference in strain was measured between the joint and bursal sides of the supraspinatus tendon, which reached a maximum of 10.6% at abduction of 120°. The joint side strain of 7.5% reached values which were previously reported to cause failure.

Differential strain causes shearing between the layers of the supraspinatus tendon, which may contribute to the propagation of intratendinous defects that are initiated by high joint side strains.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 465 - 465
1 Apr 2000
Wallace AL


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 422 - 427
1 May 1997
Wallace AL Walsh WR van Rooijen M Hughes JS Sonnabend DH

In severe forearm injuries, the diagnosis of disruption of the interosseous membrane is frequently delayed and sometimes missed, giving difficulties in the salvage of forearm stability.

We studied the structure and function of the interosseous membrane in 11 cadaver preparations, using mechanical and histological analysis. Seven of the specimens tested in uniaxial tension sustained a mid-substance tear of the central band of the membrane at a mean peak load of 1038 ± 308 N. The axial stiffness was 190 ± 44 N/mm with elongation to failure of 10.34 ± 2.46 mm. These results provide criteria for the evaluation of reconstructive methods.

A preliminary clinical investigation of the use of ultrasound suggests that this may be of value in the screening of patients with complex fractures of the forearm, and for investigating the natural history of tears of the interosseous membrane.