Skeletal muscle grafts, when thawed after freezing, can be used to repair peripheral nerves. This method was used after transection of the median nerve in the upper arm in marmosets. Examination at 28 days showed total denervation of flexor carpi radialis; at 150 days electrophysiological evidence of recovery of nerve conduction across the graft and of muscle activation was seen. Sections at this time showed nerve fibres and new functional neuromuscular junctions in the muscle. It is concluded that effective reinnervation of target muscles is possible after peripheral
The outcomes of 261 nerve injuries in 100 patients
were graded good in 173 cases (66%), fair in 70 (26.8%) and poor in
18 (6.9%) at the final review (median 28.4 months (1.3 to 64.2)).
The initial grades for the 42 sutures and graft were 11 good, 14
fair and 17 poor. After subsequent revision repairs in seven, neurolyses
in 11 and free vascularised fasciocutaneous flaps in 11, the final
grades were 15 good, 18 fair and nine poor. Pain was relieved in
30 of 36 patients by
A total of 38 patients with leprosy and localised nerve damage (11 median at the wrist and 37 posterior tibial at the ankle) were treated by 48 freeze-thawed skeletal muscle autografts ranging between 2.5 cm and 14 cm in length. Sensory recovery was noted in 34 patients (89%) and was maintained during a mean period of follow-up of 12.6 years (4 to 14). After grafting the median nerve all patients remained free of ulcers and blisters, ten demonstrated perception of texture and eight recognised weighted pins. In the posterior tibial nerve group, 24 of 30 repairs (80%) resulted in improved healing of the ulcers and 26 (87%) demonstrated discrimination of texture. Quality of life and hand and foot questionnaires showed improvement; the activities of daily living scores improved in six of seven after operations on the hand, and in 14 of 22 after procedures on the foot. Another benefit was subjective improvement in the opposite limb, probably because of the protective effect of better function in the operated side. This study demonstrates that nerve/muscle interposition grafting in leprosy results in consistent sensory recovery and high levels of patient satisfaction. Ten of 11 patients with hand operations and 22 of 25 with procedures to the foot showed sensory recovery in at least one modality.
Coaxial autografts of skeletal muscle which had been frozen then thawed were used to repair injured digital nerves in eight patients. Assessment from three to 11 months after operation showed recovery to MRC sensory category S3+ in all but one patient, an excellent level of recovery. We conclude that bespoke muscle grafts treated and used in this way may offer significant advantages over conventional nerve grafts or cable grafts especially where large peripheral nerves are involved.
About 20% of patients with leprosy develop localised granulomatous lesions in peripheral nerves. We report experiments in guinea-pigs in which freeze-thawed autogenous muscle grafts were used for the treatment of such mycobacterial granulomas. Granulomas were induced in guinea-pig tibial nerves and the animals were left for 7 to 100 days in order to assess maximal damage. The local area of nerve damage was then excised and the gap filled with denatured muscle grafts. Clinical assessment after periods up to 150 days showed good sensory and motor recovery which correlated well with the histological findings. The muscle graft technique may be of value for the treatment of chronic nerve lesions in selected cases of leprosy.
We describe 261 peripheral nerve injuries sustained
in war by 100 consecutive service men and women injured in Iraq
and Afghanistan. Their mean age was 26.5 years (18.1 to 42.6), the
median interval between injury and first review was 4.2 months (mean
8.4 months (0.36 to 48.49)) and median follow-up was 28.4 months
(mean 20.5 months (1.3 to 64.2)). The nerve lesions were predominantly
focal prolonged conduction block/neurapraxia in 116 (45%), axonotmesis
in 92 (35%) and neurotmesis in 53 (20%) and were evenly distributed
between the upper and the lower limbs. Explosions accounted for
164 (63%): 213 (82%) nerve injuries were associated with open wounds.
Two or more main nerves were injured in 70 patients. The ulnar,
common peroneal and tibial nerves were most commonly injured. In
69 patients there was a vascular injury, fracture, or both at the
level of the nerve lesion. Major tissue loss was present in 50 patients:
amputation of at least one limb was needed in 18. A total of 36 patients
continued in severe neuropathic pain. This paper outlines the methods used in the assessment of these
injuries and provides information about the depth and distribution
of the nerve lesions, their associated injuries and neuropathic
pain syndromes.
Abstract. Nerve transfer has become a common and often effective reconstructive strategy for proximal and complex peripheral nerve injuries of the upper limb. This case-based discussion explores the principles and potential benefits of nerve transfer surgery and offers in-depth discussion of several established and valuable techniques including: motor transfer for elbow flexion after musculocutaneous nerve injury, deltoid reanimation for axillary nerve palsy, intrinsic re-innervation following proximal ulnar
The October 2015 Research Roundup360 looks at: Wasted implants; Biofilms revisited; Peri-operative anticoagulation not required in atrial fibrillation; Determinants in outcome following orthopaedic surgery; Patient ‘activation’ and outcomes; Neuroplasticity and
The April 2013 Wrist &
Hand Roundup. 360 . looks at: whether botox is just for Hollywood; supercharging
We investigated the effect of delay before
Most injuries to the femoral nerve are iatrogenic in origin and occur during resection of large retroperitoneal tumours. When the defect is considerable a nerve graft is mandatory to avoid tension across the suture line. We describe two cases of iatrogenic femoral nerve injury which recovered well after reconstruction with long sural nerve grafts. The probable reasons for success were that we performed the grafting soon after the injury, the patients were not too old, the
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.Aims
Methods
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
We reviewed 234 benign solitary schwannomas treated between 1984 and 2004. The mean age of the patients was 45.2 years (11 to 82). There were 170 tumours (73%) in the upper limb, of which 94 (40%) arose from the brachial plexus or other nerves within the posterior triangle of the neck. Six (2.6%) were located within muscle or bone. Four patients (1.7%) presented with tetraparesis due to an intraspinal extension. There were 198 primary referrals (19 of whom had a needle biopsy in the referring unit) and in these patients the tumour was excised. After having surgery or an open biopsy at another hospital, a further 36 patients were seen because of increased neurological deficit, pain or incomplete excision. In these, a
The October 2023 Wrist & Hand Roundup. 360. looks at: Distal radius fracture management: surgeon factors markedly influence decision-making; Fracture-dislocation of the radiocarpal joint: bony and capsuloligamentar management, outcomes, and long-term complications; Exploring the role of artificial intelligence chatbot in the management of scaphoid fractures; Role of ultrasonography for evaluation of nerve recovery in
The April 2023 Wrist & Hand Roundup360 looks at: MRI-based classification for acute scaphoid injuries: the OxSMART; Deep learning for detection of scaphoid fractures?; Ulnar shortening osteotomy in adolescents; Cost-utility analysis of thumb carpometacarpal resection arthroplasty; Arthritis of the wrist following scaphoid fracture nonunion; Extensor hood injuries in elite boxers; Risk factors for reoperation after flexor tendon repair; Nonoperative versus operative treatment for displaced finger metacarpal shaft fractures.
1. A series of six traction lesions of the common peroneal nerve in association with a severe adduction force to knee is described. 2. The reasons for failure of the
We developed an animal model of stretch injury to nerve in order to study in vivo conduction changes as a function of nerve strain. In 24 rabbits, the tibial nerve was exposed and stretched by 0%, 6% or 12% of its length. The strain was maintained for one hour. Nerve conduction was monitored during the period of stretch and for a one-hour recovery period. At 6% strain, the amplitude of the action potential had decreased by 70% at one hour and returned to normal during the recovery period. At 12% strain, conduction was completely blocked by one hour, and showed minimal recovery. These findings have clinical implications in
We studied a consecutive series of 58 patients with penetrating missile injuries of the brachial plexus to establish the indications for exploration and review the results of operation. At a mean of 17 weeks after the initial injury, 51 patients were operated on for known or suspected vascular injury (16), severe persistent pain (35) or complete loss of function in the distribution of one or more elements of the brachial plexus (51). Repair of the nerve and vascular lesions abolished, or significantly relieved, severe pain in 33 patients (94%). Of the 36 patients who underwent nerve graft of one or more elements of the plexus, good or useful results were obtained in 26 (72%). Poor results were observed after repairs of the medial cord and ulnar nerve, and in patients with associated injury of the spinal cord. Neurolysis of lesions in continuity produced good or useful results in 21 of 23 patients (91%). We consider that a vigorous approach is justified in the treatment of penetrating missile injury of the brachial plexus. Primary intervention is mandatory when there is evidence of a vascular lesion. Worthwhile results can be achieved with early secondary intervention in patients with debilitating pain, failure to progress and progression of the lesion while under observation. There is cause for optimism in