Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.Aims
Methods
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
This study evaluated the effect of treating clinician speciality on management of zone 2 fifth metatarsal fractures. This was a retrospective cohort study of patients with acute zone 2 fifth metatarsal fractures who presented to a single large, urban, academic medical centre between December 2012 and April 2022. Zone 2 was the region of the fifth metatarsal base bordered by the fourth and fifth metatarsal articulation on the oblique radiograph. The proportion of patients allowed to bear weight as tolerated immediately after injury was compared between patients treated by orthopaedic surgeons and podiatrists. The effects of unrestricted weightbearing and foot and/or ankle immobilization on clinical healing were assessed. A total of 487 patients with zone 2 fractures were included (mean age 53.5 years (SD 16.9), mean BMI 27.2 kg/m2 (SD 6.0)) with a mean follow-up duration of 2.57 years (SD 2.64).Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.Aims
Methods
A substantial fraction of patients undergoing knee arthroplasty (KA) or hip arthroplasty (HA) do not achieve an improvement as high as the minimal clinically important difference (MCID), i.e. do not achieve a meaningful improvement. Using three patient-reported outcome measures (PROMs), our aim was: 1) to assess machine learning (ML), the simple pre-surgery PROM score, and logistic-regression (LR)-derived performance in their prediction of whether patients undergoing HA or KA achieve an improvement as high or higher than a calculated MCID; and 2) to test whether ML is able to outperform LR or pre-surgery PROM scores in predictive performance. MCIDs were derived using the change difference method in a sample of 1,843 HA and 1,546 KA patients. An artificial neural network, a gradient boosting machine, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic net, random forest, LR, and pre-surgery PROM scores were applied to predict MCID for the following PROMs: EuroQol five-dimension, five-level questionnaire (EQ-5D-5L), EQ visual analogue scale (EQ-VAS), Hip disability and Osteoarthritis Outcome Score-Physical Function Short-form (HOOS-PS), and Knee injury and Osteoarthritis Outcome Score-Physical Function Short-form (KOOS-PS).Aims
Methods
Cite this article:
The April 2024 Research Roundup360 looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?.
There has been limited literature regarding outcomes of acetabular rim syndrome (ARS) with persistent acetabular os in the setting of acetabular dysplasia. The purpose of this study was to characterize a cohort of adolescent and young adult patients with ARS with persistent os and compare their radiological and clinical outcomes to patients with acetabular dysplasia without an os. We reviewed a prospective database of patients undergoing periacetabular osteotomy (PAO) for symptomatic acetabular dysplasia between January 1999 and December 2021 to identify hips with preoperative os acetabuli, defined as a closed triradiate cartilage but persistence of a superolateral os acetabulum. A total of 14 hips in 12 patients with persistent os acetabuli (ARS cohort) were compared to 50 randomly selected ‘control’ hips without persistent os acetabuli. Preoperative and postoperative radiographs were measured for markers of dysplasia: lateral centre-edge angle, anterior centre-edge angle, acetabular inclination, and migration index. Union of the os was determined in patients with ≥ six months’ follow-up. Patient-reported outcome measures (PROMs) included the University of California, Los Angeles (UCLA) activity score and modified Harris Hip Score (mHHS, maximum score 80) completed at one year postoperatively.Aims
Methods
The April 2023 Children’s orthopaedics Roundup360 looks at: CT scan of the ipsilateral femoral neck in paediatric shaft fractures; Meniscal injuries in skeletally immature children with tibial eminence fractures: a systematic literature review; Post-maturity progression in adolescent idiopathic scoliosis curves of 40° to 50°; Prospective, randomized Ponseti treatment for clubfoot: orthopaedic surgeons versus physical therapists; FIFA 11+ Kids: challenges in implementing a prevention programme; The management of developmental dysplasia of the hip in children aged under three months: a consensus study from the British Society for Children's Orthopaedic Surgery; Early investigation and bracing in developmental dysplasia of the hip impacts maternal wellbeing and breastfeeding; Hip arthrodesis in children: a review of 26 cases with a mean of 20 years’ follow-up
This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components.Aims
Methods
The aim of this study was to investigate the agreement in interpretation of the quality of the paediatric hip ultrasound examination, the reliability of geometric and morphological assessment, and the relationship between these measurements. Four investigators evaluated 60 hip ultrasounds and assessed their quality based the standard plane of Graf et al. They measured geometric parameters, described the morphology of the hip, and assigned the Graf grade of dysplasia. They analyzed one self-selected image and one randomly selected image from the ultrasound series, and repeated the process four weeks later. The intra- and interobserver agreement, and correlations between various parameters were analyzed.Aims
Methods
The Ponseti method is the gold standard treatment for congenital talipes equinovarus (CTEV), with the British Consensus Statement providing a benchmark for standard of care. Meeting these standards and providing expert care while maintaining geographical accessibility can pose a service delivery challenge. A novel ‘Hub and Spoke’ Shared Care model was initiated to deliver Ponseti treatment for CTEV, while addressing standard of care and resource allocation. The aim of this study was to assess feasibility and outcomes of the corrective phase of Ponseti service delivery using this model. Patients with idiopathic CTEV were seen in their local hospitals (‘Spokes’) for initial diagnosis and casting, followed by referral to the tertiary hospital (‘Hub’) for tenotomy. Non-idiopathic CTEV was managed solely by the Hub. Primary and secondary outcomes were achieving primary correction, and complication rates resulting in early transfer to the Hub, respectively. Consecutive data were prospectively collected and compared between patients allocated to Hub or Spokes. Mann-Whitney U test, Wilcoxon signed-rank test, or chi-squared tests were used for analysis (alpha-priori = 0.05, two-tailed significance).Aims
Methods
Ankle fractures are common, mainly affecting adults aged 50 years and over. To aid recovery, some patients are referred to physiotherapy, but referral patterns vary, likely due to uncertainty about the effectiveness of this supervised rehabilitation approach. To inform clinical practice, this study will evaluate the effectiveness of supervised versus self-directed rehabilitation in improving ankle function for older adults with ankle fractures. This will be a multicentre, parallel-group, individually randomized controlled superiority trial. We aim to recruit 344 participants aged 50 years and older with an ankle fracture treated surgically or non-surgically from at least 20 NHS hospitals. Participants will be randomized 1:1 using a web-based service to supervised rehabilitation (four to six one-to-one physiotherapy sessions of tailored advice and prescribed home exercise over three months), or self-directed rehabilitation (provision of advice and exercise materials that participants will use to manage their recovery independently). The primary outcome is participant-reported ankle-related symptoms and function six months after randomization, measured by the Olerud and Molander Ankle Score. Secondary outcomes at two, four, and six months measure health-related quality of life, pain, physical function, self-efficacy, exercise adherence, complications, and resource use. Due to the nature of the interventions, participants and intervention providers will be unblinded to treatment allocation.Aims
Methods
The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).Aims
Methods
This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation. A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.Aims
Methods
The primary aim of this study is to assess the survival of the uncemented hydroxyapatite (HA) coated Trident II acetabular component as part of a hybrid total hip arthroplasty (THA) using a cemented Exeter stem. The secondary aims are to assess the complications, joint-specific function, health-related quality of life, and radiological signs of loosening of the acetabular component. A single-centre, prospective cohort study of 125 implants will be undertaken. Patients undergoing hybrid THA at the study centre will be recruited. Inclusion criteria are patients suitable for the use of the uncemented acetabular component, aged 18 to 75 years, willing and able to comply with the study protocol, and provide informed consent. Exclusion criteria includes patients not meeting study inclusion criteria, inadequate bone stock to support fixation of the prosthesis, a BMI > 40 kg/m2, or THA performed for pain relief in those with severely restricted mobility.Aims
Methods
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended