Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

OSTEOBLASTS RECRUITED FROM REMOTE SITES ARE INTEGRAL IN FRACTURE HEALING



Abstract

Introduction: Osteoblasts precursors reside in the marrow and small numbers circulate in the blood. Our previous work demonstrated an increase in circulating cells following fracture in humans. Skeletal injury is recognised to stimulate a distant osteogenic response.

We hypothesised that in response to fracture, some integral osteoblasts are recruited via the circulation from remote bone marrow sites.

Method: We established a fracture union model in 3-month-old, male, New Zealand White rabbits and reimplanted labelled autologous osteoblast precursors. At date of submission we have 20 rabbits allocated into 4 groups. Three groups had labelled cells re-implanted, whilst the fourth control group did not receive cells. In groups I, II and III the cells were re-implanted into the fracture gap, into the circulation and into a remote bone marrow cavity respectively. There were six animals in groups I and IV, and four in both II and III.

All animals had bone marrow harvested from their right tibia by saline flush. The mononuclear cells were isolated and culture-expanded in osteogenic medium for 3 weeks. Fluorescent reporter molecules were incorporated into the cell membranes, 24 hours prior to re-implantation of the cells into the fracture model. A 3 mm ulnar defect was preformed in all the animals. In groups I–III this was established 48 hours prior to cell re-implantation.

The animals were sacrificed at least 3 weeks after fracture surgery. Representative samples of the fracture callous, lung, liver, spleen and kidney were harvested from all animals and cryo-sectioned. Using confocal microscopy, the labelled cells were expressed as the average in 5 high power fields for each solid tissue. In addition, cyto-spins were made from blood and marrow and the cell number expressed as a percentage of the total cells.

Results: In group I, labelled cells were identified in the fracture callous, establishing their viability in vivo. Following intravenous re-implantation a smaller number of labelled cells were identified in the callous. When the cells were re-implanted into a remote marrow site, the number of cells in the callous was greater than after venous reimplantation, but less numerous than those in group I.

In all sections, these labelled cells appeared on trabecular surfaces in an osteoblastic fashion, but occasionally they were surrounded by osteoid, corresponding to osteocytes.

A small number of labelled cells were found in the blood, bone marrow, lung, liver and spleen of all animals in groups I–III. No labelled cells were identified in the kidney tissue.

Discussion and Conclusions: We have demonstrated that cells from remote sites are integral in fracture healing. Their presence in callous following venous administration supports recruitment via the circulation. This preliminary data is a proof of concept. This is an exciting new phenomenon, which could provide alternatives for harvesting skeletal progenitor cells and for their delivery in the treatment of bony pathology.

Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.