Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

INDUCTION OF ENDOGENOUS ANTIBIOTICS IN BACTERIAL BONE INFECTION



Abstract

Introduction: Osteomyelitis often causes functional impairment due to tissue destruction and the incidence of this condition appears to be increasing. Antimicrobial peptides (AP) are effectors of the innate defence system and play a key role in host protection at cellular surfaces. Human beta-defensins (HBD) represent a major subclass of antimicrobial peptides and act as a first line defence through their broad spectrum of potent antimicrobial activity (1). The aim of the present in vitro and in vivo investigations was to study the expression and regulation of HBD-2 and -3 in the case of bacterial bone infection and to analyze the effects of immunosuppressive drugs on bone-derived AP-expression.

Methods: Samples of healthy human bone, osteomyelitic bone and cultured osteoblasts (primary-, hFOB- and SAOS-2 cells) were assessed for the expression of HBD-2/-3 by RT-PCR, immunohistochemistry or ELISA. Regulation of HBD-2/-3 was studied after exposure to Staphylococcus aureus (SAS) or Pseudomonas aeruginosa (PAS), proinflammatory cytokines (IL-1, 10ng/ml) and immunosuppressive drugs (glucocorticoids, methotrexate) and was assayed by ELISA. An osteomyelitis mouse model was performed to demonstrate the regulation of the murine homologues of HBD-2/-3 by real time RT-PCR and immunohistochemistry.

Results: ELISA experiments demonstrated, that samples of infected bone produce higher levels of endogenous antibiotics such as HBD-2 when compared with samples of healthy bone. After exposure of osteoblasts to bacteria or proinflammatory cytokines a clear HBD-2/-3 induction was observed. Additional treatment with glucocorticoids or methotrexate prevented bacteria mediated HBD-2 induction in cultured osteoblasts. The osteomyelitis mouse model demonstrated transcriptional up-regulation of the murine HBD-homologues in bone after intra-osseous contamination of the tibia.

Discussion: Our study firstly demonstrate that osteoblasts are able to produce anti-inflammatory peptides such as HBD-2 in vitro and in an animal model of staphylococcal osteomyelitis. We provide evidence for a new role of osteoblasts during infection of bone tissues, namely, the ability to produce antimicrobial peptides and modulating immune responses in inflammatory bone diseases.

Immunosuppressive drugs such as glucocorticoids or methotrexate may increase the susceptibility to bone infection by decreasing AP-expression levels in case of microbial challenge. Novel approaches to management are required particularly in the era of multi-resistant bacterial strains. Current investigation will focus on the regulation of human β-Defensins in bone and may allow artificial amplification for prevention of bacterial bone infection in the future.

Correspondence should be addressed to Ms Larissa Welti, Scientific Secretary, EFORT Central Office, Technoparkstrasse 1, CH-8005 Zürich, Switzerland