Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ROTATIONAL ALIGNMENT OF THE TIBIAL COMPONENT IN TKA IS BETTER AT THE MEDIAL THIRD OF TIBIAL TUBEROSITY THAN AT THE MEDIAL BORDER



Abstract

Background: Correct rotational alignment of the femoral and tibial component is an important factor for successful TKA. The transepicondylar axis is widely accepted as a reference for the femoral component. There is no such reference for the tibial component. CT scans were used in this study to measure which tibial landmark most reliably reproduces a correct femoro-tibial rotational alignment in TKA. Furthermore, the impact of computer-assisted navigation on rotational alignment is investigated.

Materials and Methods: After informed consent, 80 patients were randomized to receive either navigated or conventional TKA. All patients received a cemented, unconstrained, cruciate-retaining TKA with a rotating platform. CT scans were performed 5–7 days postoperatively but before discharge. The rotational variance between the femoral and tibial components was measured.

Results: There was notable rotational variance between the femoral and tibial components in both groups. In the navigated group, the median variance was 1.2° relative external rotation of the femur (range: 16.2° relative external to 12.7° relative internal rotation of the femur). In the conventional group, the median variance was 1.7° relative internal rotation of the femur (range: 9.0° relative external to 14.4° relative internal rotation of the femur). Using the medial third of the tuberosity as reference for tibial rotational alignment, 67.5% of all TKA had a femoro-tibial variance within ± 5°, 85% within ± 10° and 97.5% within ± 20°. Using the medial border of the tibial tubercle as reference this variance was greater, 3.8% had a femoro-tibial variance within ± 5°, 15% within ± 10° and 68.8% within ± 20°.

Conclusion: Using fixed bone landmarks for rotational alignment leads to a notable variance between femoral and tibial component. Computer-assisted navigation did not reduce this variance.

Referencing the tibial rotation on a line from the lateral border of the medial third of the tibial tubercle to the center of the tibial tray resulted in a better femoro-tibial alignment than using the medial border of tibial tubercle as landmark. Surgeons using fixed bearings with a high conformity between the inlay and the femoral component should be aware of this effect to avoid premature polyethylene wear.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org