Abstract
Aim
Bacterial biofilms play a key role in prosthetic infection (PI) pathogenesis. Establishment of the biofilm phenotype confers the bacteria with significant tolerance to systemic antibiotics and the host immune system meaning thorough debridement and prosthesis removal often remain the only possible course of treatment. Protection of the prosthesis and dead-space management may be achieved through the use of antibiotic loaded cements and beads to release high concentrations of antibiotics at the surgical site. The antibacterial and antibiofilm efficacy of these materials is poorly understood in the context of mixed species models, such as are often encountered clinically.
Methods
A P. aeruginosa and S. aureus in vitro co-culture biofilm model was grown using 1/5th BHI supplemented with 20 µM hemin. The ability of beads made from a synthetic calcium sulfate (CaSO4) loaded with vancomycin, tobramycin and vancomycin & tobramycin in combination to prevent biofilm formation and kill established co-culture biofilms were assessed using viable cell counts and confocal scanning laser microscopy (CSLM) over a 7 day time course. To assay for genetic changes to the individual species as a result of their presence together within a biofilm, mutation rates were measured using fluctuation analysis following growth as planktonic and biofilm cultures, alone or in co-culture. Mutants were determined based on their ability to grow on agar plates containing an inhibitory concentration of rifampicin. Mutation rates were calculated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator and 94% confidence intervals compared for significance.
Results
Mixed species biofilms displayed differential sensitivity to vancomycin alone and tobramycin alone CaSO4-loaded beads relative to single species biofilms. Preliminary data suggests 10- and 100-fold increase in mutation rates of P. aeruginosa and S. aureus, respectively, when in a co-culture relative to monospecies biofilm which, while further work is needed, may directly or indirectly contribute to the differing antibiotic sensitivities observed. A broad-spectrum intervention of CaSO4-loaded vancomycin & tobramycin beads was able to prevent bacterial colonisation and attenuate P. aeruginosa and S. aureus mixed species biofilm formation for multiple days.
Conclusions
Synthetic antibiotic-loaded CS beads, with a broad-spectrum antibiotic combination, have potential to reduce or eliminate mixed species biofilm formation on implant material by providing locally high concentrations over sufficient time periods to aid in the management of PIs.
* Stimulan, Biocomposites Ltd