Abstract
Instability is the most common reason for revision after total hip arthroplasty (THA). Since THA requires arthrotomy of the hip and replacement with a femoral head that is smaller than the normal hip, instability following THA is always a potential concern. Many factors contribute to the development of instability after THA including: restoration of normal anatomy, implant design, component position, surgical approach and technique, and numerous patient related factors. Recently, the role of spinal mobility and deformity has been shown to have a significant effect on risk of dislocation after THA. The long held guidelines for component positioning or so called “safe zone” described by Lewinnek have also been questioned since most dislocations have been shown to occur in patients whose components are positioned within this “safe” range.
In the early post-operative period, dislocation can occur prior to capsular and soft tissue healing if the patient exceeds their peri-operative range of motion limits. Closed reduction and abduction bracing for 6 weeks may allow for soft tissue healing and stabilization of the hip. It is important to try and identify the mechanism of dislocation since this can affect the technique of closed reduction, how the patient is braced following reduction and what may need to be addressed at the time of revision if dislocation recurs. Closed reduction and bracing may be effective in patients who have a previously well-functioning, stable THA who suffer a traumatic dislocation after the peri-operative period. Despite successful closed reduction, recurrent dislocation occurs in many patients and can be secondary to inadequate soft tissue healing, patient noncompliance or problems related to component positioning. Patients who incur more than 2 dislocations should be considered for revision surgery.
Prior to revision surgery, an appropriate radiographic evaluation of the hip should be performed to identify any potential mechanical/kinematic issues that need to be addressed at the time of revision. Typically this involves plain radiographs, including a cross table lateral of the involved hip to assess acetabular version, but may also involve cross-sectional imaging to assess femoral version. Patients with soft tissue pseudotumors frequently have significant soft tissue deficiencies that are not amenable to component repositioning alone and require use of constrained or dual mobility components. In general, “limited revisions” consisting of modular head and liner exchange with insertion of a lipped liner and larger, longer femoral head rarely correct the problem of recurrent instability, since component malposition that frequently contributes to the instability is not addressed. Similarly, insertion of a constrained liner in a malpositioned cup is associated with a high rate of implant failure and recurrent dislocation since impingement contributing to the instability is not addressed.
In patients who fail closed management and have a history of recurrent instability, we have found the treatment paradigm described by Wera, et al. to be very helpful in the management of the unstable THA. Several studies have shown that tripolar type constrained liners appear to perform considerably better than locking ring type constrained liners. As a result, dual mobility implants are becoming more widely utilised in patients with abductor and other soft tissue deficiencies, hip instability of uncertain etiology and patients with increased risk factors for instability undergoing primary THA. Early results with dual mobility components have been shown to have a low rate of failure in high instability risk revision THAs. These devices do have several unique potential complications and their use should be limited to patients with significantly increased risk of dislocation and instability.