Abstract
Recent advances in tissue engineering have made progress towards the development of biomaterials with the capability for delivery of growth factors to promote enhanced tissue repair. However, controlling the release of these growth factors is a major challenge and the associated high costs and side effects of uncontrolled delivery of has proved increasingly problematic in clinical orthopaedics. Gene therapy might be a valuable tool to avoid these limitations. While non-viral vectors are typically inefficient at transfecting cells, our group have had significant success in this area using a scaffold-mediated gene therapy approach for regenerative applications. These gene activated scaffold platforms not only act as a template for cell infiltration and tissue formation, but also as a ‘factory’ to provoke autologous host cells to take up specific genes and then engineer therapeutic proteins in a sustained but eventually transient fashion. Alternatively, scaffold-mediated delivery of siRNAs and miRNAs can be used to silence specific genes associated with pathological states in orthopaedics. This presentation will provide an overview of some of this research with a particular focus on gene-activated biomaterials for promoting stable cartilage formation in joint repair and on scaffold-based delivery of therapeutics for enhancing vascularization & bone repair.