Abstract
The purpose of this study is to assess the accuracy of component positioning and incidence of peri-operative and 90-day post-operative complications following robotic arm-assisted and conventional total hip arthroplasty (THA). Three groups of patients were analyzed for this study: those that underwent conventional THA performed by Surgeon 1, conventional THA performed by Surgeon 2, or robotic arm-assisted THA performed by Surgeon 2. All patients underwent primary uncemented THA via a posterior approach. Patient characteristics, intra-operative data, and 90-day post-operative complications were collected. Post-operative standing pelvic radiographs were utilized to measure acetabular position and to identify post-operative complications. Acetabular component position measurements revealed substantially less variation in both inclination and anteversion in the Surgeon 2 – Robotic group. Nine patients had intra-operative cables placed for intra-operative calcar fracture in the Surgeon 1 group compared to one patient and three patients in Surgeon 2 – Robotic and Surgeon 2 – Traditional groups, respectively. Nine instances of femoral stems subsidence were identified in the Surgeon 1 group compared to one patient in Surgeon 2 – Traditional. There were four instances of dislocation in the Surgeon 1 group compared to one in the Surgeon 2 – Robotic group. Robotic arm-assisted THA decreases the variation in acetabular component positioning compared to conventional THA. However, the benefit of this is unclear as there is little difference in dislocation rate. This study may demonstrate additional value in CT-based implant planning as this cohort had the lowest incidence of femoral component complications.