Abstract
Introduction
Enhanced stability using dual mobility has been demonstrated but concerns about potential for corrosion in modular versions have been raised. Case reports of corrosion with malseated inserts have heightened concerns over this modularity. Some have claimed that malseating is rare, the true frequency is unknown. The purpose of our investigation was to determine the incidence of liner malseating in dual mobility implants at our institution.
Methods
567 hips had primary modular dual mobility hip replacements (Biomet or Stryker) between 2016 and 2018. Post-operative radiographs were reviewed independently by two reviewers to identify malseating. Liners were considered malseated if there was a noticeable gap between the metal liner and acetabular shell(figure 1). All liners deemed to be malseated were independently assessed by 3 separate reviewers for confirmation.
Results
32 of the 567 (5.6%) of the liners were found to be malseated. There were no malseated liners in the Biomet group (n=46). There were 32 malseated liners in 521 (6.1%) Stryker cups using 3 different Stryker shells: 19 of 229 (8.23%) in the Trident I hemispherical group; 5 of 99 (5.05%) in in the Trident I PSL group and 8 of 193 (4.15%) in the Trident II group.
Conclusions
Our observation of malseating in 5.6% of patients is clearly disconcerting. The etiology of malseating is unclear ranging from soft tissue interposition to possible shell deformation leading to a geometric mismatch between cup and liner. The clinical impact of this observation is unknown but speculation regarding risk of micromotion along the interface leading to fretting and corrosion appears plausible. Further clinical followup will be necessary to determine whether these radiographic finding will ultimately impact clinical outcome.
For any tables or figures, please contact the authors directly.