Abstract
Introduction
PJI is a devastating complication following total joint arthroplasty. In this study, we explore the efficacy of a bacteriophage-derived lysin, PlySs2, against in-vitro biofilm on titanium implant surfaces and in an acute in-vivo murine debridement antibiotic implant retention (DAIR) model of PJI.
Methods
In-vitro: Xen 36 S. aureus biofilm was grown on Ti-6Al-4V mouse tibial implants for 1 day or 5 days and subsequently exposed to growth media, 1000× minimal inhibitory concentration (MIC) Vancomycin, or 5× MIC PlySs2. Implants were sonicated and analyzed for Colony Forming Units (CFU).
In-vivo: A Ti-6Al-4V implant was inserted into the proximal tibia of C57BL/6J mice (n=21). All mice received 104 CFU inoculation of Xen 36 S. aureus to the knee joint capsule and the infection was permitted 5 days to progress. On day 5 the mice were separated into three groups (n=7/group): (1) no further surgical intervention (control group), (2) irrigation and debridement (I&D) with saline, (3) I&D with 2mg/mL PlySs2. No implant-exchange was performed to mimic a debridement, antibiotic, and implant retention (DAIR) therapeutic strategy. All mice were sacrificed at day 10.
Results
CFU counts for 1-day and 5-day in-vitro grown biofilm on implants demonstrate a >3log-fold reduction with PlySs2 compared to Vancomycin (p=0.01) with no significant difference between Vancomycin and control. In-vivo the addition of PlySs2 to Vancomycin treated mice reduces bacterial load in the periposthetic tissue and implant (p<0.05) with 5 days of treatment.
Conclusion
PlySs2 5× MIC exhibits superior anti-microbial effect compared to Vancomycin on implants with 1-day and 5–5day biofilm maturities. The addition of PlySs2 to Vancomycin treatment of an acute established PJI further reduces tissue CFU and implants CFU.
For any tables or figures, please contact the authors directly.