Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of back pain. A number of emerging treatments for the condition have failed during clinical trial due to the lack of robust biomechanical testing during product development. The aim of this work was to develop improved in-vitro testing methods to enable new therapeutic approaches to be examined pre-clinically. It forms part of a wider programme of research to develop a minimally invasive nucleus augmentation procedure using self-assembling hydrogels.
Previous static testing on extracted IVDs have shown large inter-specimen variation in the measured stiffness when specimen hydration and fluid flow were not well controlled. In this work, a method of normalising the hydration state of IVDs prior-to and during compressive testing was developed.
Excised adult bovine IVDs underwent water-pik treatment and a 24-hour agitated bath in monosodium citrate solution to maximise fluid mobility. Specimens were submerged in a saline bath and held under constant pressure for 24 hours, after which the rate of change of displacement was low. Specimens were then cyclically loaded, from which the normalised specimen stiffness was determined. A degenerate disc model was developed with the use of enzymatic degeneration, allowing specimens to be tested sequentially in a healthy, degenerate, and then treated state. Self-assembling peptide-GAG hydrogels were tested using the developed method and the effect of treatment on stiffness and disc height were assessed.
Compared to previous static tests, the improved method reduced the variation in the normalised specimen stiffness. In addition, statistically significant differences were seen before and after enzymatic degradation to simulate degeneration, thus providing controls against which to evaluate treatments. The augmentation of the nucleus with the hydrogel intervention reduces the stiffness of the degenerate disc towards that of the healthy disc. This method is now being used to further investigate nucleus augmentation devices.