Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MUSCLE ACTIVITY IN TOTAL KNEE ARTHROPLASTY PATIENTS WHILE ASCENDING AND DESCENDING A RAMP

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Many patients who undergo a total knee arthroplasty (TKA) wish to return to a more active lifestyle. The implant must be able to restore adequate muscle strength and function. However, this may not be a reality for some patients as quadriceps and hamstrings muscle activity may remain impaired following surgery.

The purpose of this study was to compare muscle activity between patients implanted with a medial pivot (MP) or posterior stabilized (PS) implant and controls (CTRL) during ramp walking tasks.

Fifteen patients were assigned to either a MP (n=9) or PS (n=6) TKA operated by the same surgeon. Nine months following surgery, the 15 patients along with nine CTRL patients completed motion and EMG analysis during level, ramp ascent & descent walking tasks.

Wireless EMG electrodes were placed on six muscles: vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), semimembranosus (SM) muscles, gastrocnemius medial head (GM), and gastrocnemius lateral head (GL). Participants completed three trials of each condition.

EMG data were processed for an entire gait cycle of the operated limb in the TKA groups, and for the dominant limb in the CTRL group. The maximum muscle activity achieved with each muscle during the level trial was used to normalize the ramp trials. The onset and offset of each muscle was determined using the approximated generalized likelihood ratio.

Peak muscle activity (PeakLE), total muscle activity (iEMG), and muscle onsets/offsets were determined for each muscle for the ramp ascent and descent trials. Non-parametric Kruskal Wallace tests were used to test for statistical significance between groups with α=0.05.

During the ramp up task, both MP and PS groups had significantly greater PeakLE and iEMG for the hamstring muscles compared to the CTRL, whereas the PS group had significantly greater PeakLE compared with the MP group for the SM muscle.

During the ramp down task, both MP and PS groups had significantly greater PeakLE and iEMG for the SM and GL muscles compared to the CTRL. The PS group also had significantly greater iEMG for the BF and VM muscles compared to the CTRL. The MP group had a significantly earlier offset for the SM muscle compared to the CTRL.

Stability in a cruciate removing TKA is partially controlled by the prosthetic design. During the ramp up task, the TKA groups compensated the tibial anterior translation by activating their hamstrings more and for a longer duration. The MP group required less hamstrings activation than the PS group.

During the ramp down task, TKA patients stiffened their knee in order to stabilize the joint. The quadriceps, hamstrings and GL muscle were activated more and for a longer duration than the CTRL group to protect the tibial posterior translation. The PS group required greater BF and VM iEMG than the MP group.

Even if surgery reduced pain, differences in muscle activity exist between TKA patients and healthy controls. The prosthetic design provides some stability to the knee, and the MP implant required less muscle activation than the PS implant to stabilize the knee joint.