Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ASSESSMENT OF RANGE OF MOTION LOSS FOLLOWING LUMBAR INTERBODY FUSION ON A L4-L5 FINITE ELEMENT MODEL USING SOLID AND POROUS CAGES

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Background

It is known that severe cases of intervertebral disc (IVD) disease may lead to the loss of natural intervertebral height, which can cause radiating pain throughout the lower back and legs. To this point, surgeons perform lumbar fusion using interbody cages, posterior instrumentation and bone graft to fuse adjacent vertebrae together, thus restoring the intervertebral height and alleviating the pain. However, this surgical procedure greatly decreases the range of motion (ROM) of the treated segment, mainly caused by high cage stiffness. Additive manufacturing can be an interesting tool to reduce the cage's elastic modulus (E), by adding porosity (P) in its design. A porous cage may lead to an improved osteointegration since there is more volume in which bone can grow. This work aims to develop a finite element model (FEM) of the L4-L5 functional spinal unit (FSU) and investigate the loss of ROM induced by solid and porous cages.

Materials and Methods

The Intact-FEM of L4-L5 was created, which considered the vertebrae, IVD and ligaments with their respective material properties1. The model was validated by comparing its ROM with that of other studies. Moments of 10 Nm were applied on top of L4 while the bottom of L5 was fixed to simulate flexion, extension, lateral bending and axial rotation2. The lumbar cages, posterior instrumentation and bone graft were then modelled to create the Cage-FEMs. Titanium was chosen for the instrumentation and cages. Cages with different stiffness were considered to represent porous structures. The solid cage had the highest modulus (E0=110 GPa, P0=0%) whereas the porous cages were simulated by lowering the modulus (E1=32.8 GPa, P1=55%; E2=13.9 GPa, P2=76%; E3=5.52 GPa, P3=89%; E4=0.604 GPa, P4=98%), following the literature3. The IVD was removed in Cage-FEMs to allow the implant's insertion [Fig. 1] and the previous loading scenarios were simulated to assess the effects of cage porosity on ROM.

Results

The Intact-FEM presents acceptable ROM according to experimental and numerical studies, as shown by the red line in Figure 2. After insertion, lower ROM values in Cage-FEMs are measured for each physiological movement [Fig. 3]. In addition, highly porous cages have greater ROM, especially in axial rotation.

Discussion

Significant reduction of ROM is expected after cage insertion because the main goal of interbody fusion is to allow bone growth. As such, the procedure's success is highly dependent on segmental stability, which is achieved by using cages in combination with bone graft and posterior instrumentation. Furthermore, higher cage porosities seem to affect the FSU. In fact, ROM increases more as the cage modulus approaches that of the cancellous bone (Ecanc-bone=0.2 GPa1). Next step will be to assess the effects of cage design on the L4-L5 FSU mechanical behavior and stress distribution. To conclude, additive manufacturing offers promising possibilities regarding implant optimization, being able to create porous cages, thus reducing their stiffness.

For any figures or tables, please contact the authors directly.