Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SCREENING INFANT DEVELOPMENTAL ASPECTS OF LEARNING DURING STANDING BY MEASURING PRESSURE DISTRIBUTION BENEATH THE FEET

The 28th Annual Meeting of the European Orthopaedic Research Society (EORS), held online, 17–18 September 2020.



Abstract

It has been recently being investigated how the pressure distribution beneath the foot points to the active usage of the foot in standing adults. Nevertheless, it offers new perspectives in postural research by introducing foot-triggered sensory-motor control strategies in quiet standing dynamics. Furthermore, the spatiotemporal evolution of physiological postural control strategies has not clearly been identified yet. Thus, we have chosen developmental aspects of the infant's postural adjustments as a media to explore learning of biped standing. This study investigates developmental changes in active usage of a contact surface and pressure distribution beneath infants’ foot during learning of upright posture. We started studying longitudinally on 22 female and 22 male infants at their 12.5th months (1st trimester, T1) and kept on screening the same subjects at every three months (19 females and 12 males at 15.5th months (T2), 17 females and 7 males at 18.4th months (T3)), during their normal checkup appointments in Gazi University Hospital, Social Pediatrics Department-Ankara/Turkey. Each trial was fulfilled by an infant standing on a pressure pad placed on top of a force plate to collect the pressure distribution data beneath the feet for 15 sec at T1, and 25-sec long duration at T2 and T3 and was repeated at least three times. During the data collection, infants’ parents were beside them trying to get infants’ attention towards themselves preventing them from being distracted and/or moving and walking around. The data collection setup additionally contained one camera for videotaping the infants’ reactions.

Our main research interest in this study was to explore the spatiotemporal evolution of the behavioral characteristics of human postural sway. We expected to monitor the developmental changes at an infant's standing experience during their 2nd-year epoch through time-frequency domain analyses and explorative/exploitative informatics’ metrics. We computed Center of Pressure (CoP) time signal from the data collected by the force plate and the pressure pad. In time domain, mean and the variance at the CoP time signal were estimated in both antero-posterior (CoPx) and medio-lateral (CoPy) directions. In the frequency domain, 50% and 95% power frequency, centroidal frequency (CF), and frequency dispersion were calculated. We observed substantial developmental changes in every trimester, each being comparable with the previous one, which points to infants experiencing a major developmental milestone that can be noticed considerably even in the shorter time intervals. The phase plane analysis performed through the time signals and their time derivatives (estimated velocity of CoPx and CoPy) revealed a shrinkage in the characteristic pattern observed through the following epochs. One-Way ANOVA analysis demonstrated significant differences in 50% and 95% power and centroidal frequency of CoPx (p=0.001, p=0.000, p=0.000) and CoPy (p=0.002, p=0.000, p=0.000) respectively. Further, post hoc analyses demonstrated a significant difference at T1 compared against T2 and T3 for all three frequency domain metrics. Particularly speaking, CF dropped from 2.39 to 1.65 Hz, and from 2.86 to 1.70 Hz for CoPx and CoPy respectively, while passing from T1 to T2. The current status of this research managed to grasp the developmental aspects of infant standing through frequency domain metrics and reconstructed phase space analysis up to their 18 months old.