Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE EFFECT OF ELECTRON IRRADIATION ON THE BIOACTIVITY OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE PARTICLES

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 2 of 2.



Abstract

Introduction

Aseptic loosening is a major cause of revision of total joint arthroplasty (TJA). Although crosslinked Ultra-high molecular weight polyethylene (UHMWPE) have improved wear resistance, residual radicals remaining in the material have a possibility to increase bio-reactivity of particles [2]. In this study, we attempt to evaluate the effects of irradiation and residual radicals on bio-reactivity of the material with a new method called the inverse culture method [1].

Material and methods

UHMWPE particles (10µm diameter in average, Mitsui chemicals Co., LTD) along with irradiated particles (RAD, 300kGy electron irradiation) and particles annealed after the irradiation (RAD+ANN, 100°C 72 hours) are co-incubated with mouse macrophage cell line RAW264 using the inverse culture method. The amount of TNF-α was measured with ELISA.

Results and discussion

The amount of TNF-α released by macrophages reacting with virgin UHMWPE, RAD and RAD+ANN is shown in Figure 1. The horizontal axis represents the total surface area of the particles. The coefficient of determination and inclination of the approximate curve are calculated to analyze the result. The coefficient of determination suggested that cytokines released from macrophage is dose-dependent to the surface area of polyethylene particles, which was consistent with the result of our former study[1].

We use the inclination of the approximation curve in Figure 1 as an index to evaluate the bio-reactivity. The values of the index of virgin, RAD and RAD+ANN were 21×10-4gLm-2, 100×10-4gLm-2 and 59×10-4gLm-2. The inclination of the approximation line of RAD is significantly larger than that of virgin (test for the difference of regression line angle). These suggest that the irradiation to UHMWPE particles increases their bio-reactivity possibly due to radicals. The increased reactivity cannot be eliminated by annealing (100°C 72 hours) completely.

Conclusion

Although electron irradiation increases the bio-reactivity of UHMWPE particles, annealing after the irradiation can decrease it, but cannot restore to original reactivity.

For any figures or tables, please contact authors directly.