Abstract
Introduction
Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals.
Materials and Methods
Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC® All Poly (n=14), ATTUNE® Anatomic (n=6), and ATTUNE®Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code.
Results
Burnishing heat-map comparisons between retrievals and simulator specimens for each of the three designs were compared. Retrievals show more variation than simulator devices, however the general loci and relative area of burnished regions is closely aligned for each of the three designs. The retrieved and simulated burnishing scar heat-maps on all-poly PFC® patellae are centered medio-laterally with a wider profile on the lateral aspect. The burnishing marks are continuous. A similar observation may be made of the ATTUNE® medialized dome, retrievals and simulator specimens, though the contact areas appear to be more concentrated away from the apex. The anatomic patellae show two primary regions of contact, and minimal burnishing at the apex. The simulator specimens likewise show two principal regions of contact.
Discussion
Wear scar analysis shows that joint simulation on AMTI VIVO yields clinically relevant wear patterns across a variety of device types. Clinically relevant damage provides insight that load and motion inputs to the simulator deliver results that may be used to interpret in vivo performance or analyze future designs and/or materials. This qualitative surface contact analysis will help to inform future quantitative mass loss and fatigue failure studies.
For any figures or tables, please contact authors directly.