Abstract
Distal radius fractures (DRF) are the most common fracture type in all age groups combined. Unstable DRF may be surgically managed with volar or dorsal plate fixation. Dorsal plating has traditionally been associated with decreased range of motion (ROM). However, this assumption has not been recently assessed to determine whether functional ROM is achievable (approximately 54o of flexion and 60o of extension) with recent advances in lower profile dorsal plate design. The aim of this study was therefore to compare ROM and patient reported outcome measures between volar and dorsal plating methods for DRF.
A meta-analysis was performed to directly compare ROM and DASH scores between dorsal and volar plate fixation for DRF. Separate literature searches for each plating method were performed using MedLine and EMBase on January 28, 2018. Exclusion criteria consisted of non-English articles, basic science articles, animal/cadaver studies, case studies/series, combined operative approaches, papers published more than 20 years ago and paediatric studies. Only articles with at least one year patient follow-up and a) ROM and AO distal radius fracture classification, or b) DASH scores were included. Raw data was extracted from all articles that met inclusion criteria to compile a comprehensive dataset for analysis. Descriptive statistics with z-score comparison for AO classification or a two-tailed independent samples t-test for ROM and DASH scores for dorsal versus volar plating were performed. Significance was defined as p < 0 .05.
After rigorous screening, 6 dorsal plating and 43 volar plating articles met inclusion criteria for ROM/AO classification versus 6 dorsal plating and 44 volar plating articles for DASH scores. The weighted means of flexion (dorsal 54.9o, SD 9.3, n=257, volar 61.3o, SD 11.5, n=1906) and extension (dorsal 60.0o, SD 12, n=257, volar 62.8o, SD 11.4, n=1906) were statistically significantly different (both p < 0 .001) between the two plating methods. The volar plating group had a significantly higher proportion of AO type C fractures (dorsal 0.5, n =169, volar 0.6, n=1246, p < 0 .001). The weighted means of reported DASH scores were not significantly different between dorsal (14.01, SD 14.8) versus volar (13.6, SD 12.8) plating (p=0.54).
Though mean wrist flexion and extension were statistically different between the dorsal versus volar plating methods, the difference between group means was less than 5o, which is unlikely to be clinically significant. Additionally, we did not find a significant difference in DASH scores between the two plating methods. Taken together, these findings imply that the statistical difference in ROM outcomes are likely not clinically significant and should therefore not dictate choice of plating method for fixation of DRF.