Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPUTED TOMOGRAPHY VALIDATION OF INTRAOPERATIVE IMPLANT POSITION AND KNEE ALIGNMENT AS DETERMINED BY THE MAKO TOTAL KNEE ARTHROPLASTY SYSTEM

International Society for Technology in Arthroplasty (ISTA) meeting, New Early-Career Webinar Series (NEWS), held online, November 2020.



Abstract

Robotic-assisted technology in total knee arthroplasty (TKA) aims to increase implantation accuracy, with real-time data being used to estimate intraoperative component alignment. Postoperatively, Perth computed tomography (CT) protocol is a valid measurement technique in determining both femoral and tibial component alignments. The aim of this study was to evaluate the accuracy of intraoperative component alignment by robotic-assisted TKA through CT validation. A total of 33 patients underwent TKA using the MAKO robotic-assisted TKA system. Intraoperative measurements of both femoral and tibial component placements, as well as limb alignment as determined by the MAKO software were recorded. Independent postoperative Perth CT protocol was obtained (n.29) and compared with intraoperative values. Mean absolute difference between intraoperative and postoperative measurements for the femoral component were 1.17 degrees (1.10) in the coronal plane, 1.79 degrees (1.12) in the sagittal plane, and 1.90 degrees (1.88) in the transverse plane. Mean absolute difference between intraoperative and postoperative measurements for the tibial component were 1.03 degrees (0.76) in the coronal plane and 1.78 degrees (1.20) in the sagittal plane. Mean absolute difference of limb alignment was 1.29 degrees (1.25), with 93.10% of measurements within 3 degrees of postoperative CT measurements. Overall, intraoperatively measured component alignment as estimated by the MAKO robotic-assisted TKA system is comparable to CT-based measurements.