Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

A METABOLOMIC STUDY INTO THE EFFECT OF NON-LETHAL DISPERSION ON ANTIMICROBIAL TOLERANCE IN STAPHYLOCOCCUS AUREUS BIOFILMS

The British Orthopaedic Research Society (BORS) Annual Meeting 2020, held online, 7–8 September 2020.



Abstract

Abstract

OBJECTIVES

Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms.

METHODS

Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry.

RESULTS

Non-lethal dispersion of biofilm-associated S. aureus was associated with a four-fold reduction in gentamicin tolerance and a 25% increase in cellular respiration of both dispersed and adherent cells. Metabolome analysis found non-lethal dispersion reduced intracellular levels of L-ornithine and L-proline, with increased levels of cyclic nucleotides (p<0.05) in both liberated cells and the remaining biofilm-associated bacteria. These metabolomic changes have previously been shown to be associated with inactivation of the carbon catabolite repression mechanism, which is a key regulatory gatekeeper in the cellular resuscitation of dormant S. aureus cells.

CONCLUSION

The metabolomic pipeline described in this study presents a valuable tool in the elucidation of molecular mechanistic pathways in biofilm pathogenesis. Kreb's cycle reactivation, through the carbon catabolite repression regulatory mechanism, has been shown to be associated with the reversal of biofilm-associated gentamicin tolerance. Understanding of the biosynthetic changes associated with the biofilm state will assist in the discovery of novel therapeutic targets in the management of biomaterial-related infections.

Declaration of Interest

(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.