Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

CELLULAR RESPONSE OF HEALTHY AND OSTEOPOROTIC BONE CELLS TOWARDS TITANIUM SCAFFOLDS CREATED BY NOVEL LASER TEXTURING COMPARED WITH CLINICAL STANDARD SLA IMPLANTS

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 2 of 3.



Abstract

The goal was to analyze the cellular response, specifically the osteogenic capacity, of titanium (Ti) implants harbouring a novel laserbased-surface-structure with the overall aim: augmented osteointegration. Surface micro-/nanoproperties greatly influence cell behaviour at the tissue-implant-interface and subsequent osteointegration. We investigated Ti-materials subjected to a specially developed shifted-Laser-Surface-Texturing (sLST) technology and compared them to a standard roughening-technique (sand-blasting-acid-etching, SLA). The biological response was evaluated with hMSCs, which are naturally available at the bone-implant-interface. We hypothesized: the novel surface is beneficial for our three different (young/healthy-YH; aged/healthy-AH;aged/osteoporotic-OP) cohorts.

The sLST was performed using a SPI-G3-series laser (beam-wavelength=1064nm, pulse-duration=200ns). For the SLA surface, Ti was sandblasted, afterwards acid-etched (HCl/H2SO4). Three different hMSC cohorts were studied: YH: n=6,29±6; AH: n=5,79±5; OP: n=5,76±5 years (osteoporosis confirmed via DEXA-scan). OP hMSCs show e.g. ColI-deficient-matrix and decreased mineralization. Cells were examined for survival, cell proliferation and cytoskeleton arrangement. Osteogenic differentiation was carried out over 21 days, matrix mineralization was validated with Alizarin-Red-S-staining and quantification.

Laser-texturing generated precisely the desired microgeometry. On nanostructural level, differently-sized Ti-droplets were formed stochastically by laser-induced-Ti-plasma. Live/dead-/Actin-stainings showed comparable results for all cohorts and surfaces in terms of survival and cell shape. On Ti-materials, cell growth showed no significant difference between the 3 cohorts. Alizarin quantification revealed the highest levels on laser-textured-surfaces; highest value for YH, followed by AH, lastly OP; no significance between AH/YH, but between OP/YH (p<0.0001). However, mineralization of all cohorts cultured on laser-textured-surfaces increased significantly (p<0.0001) compared to respective SLA-group, with >20fold higher value in the OP-cohort (AH:11fold, YH:6fold).

The data proves the biocompatibility of the laser-structured-Ti for young+aged cohorts. Osteogenic differentiation was significantly augmented on laser-treated-Ti. Most intriguingly, OP-donors could reach manifold increased mineralization, suggesting the novel laser texturing can counteract the osteoporotic phenotype. As osteogenesis-enhancing capacities may be related to mechanisms controlling cellular shape/fate, further investigations referring to this are currently ongoing. In conclusion, our laser-textured-Ti-materials are safe, can have a demand-oriented designer-surface-topography and represent a great potential for development into next-generation-implants suitable for different patient-cohorts, especially osteoporosis patients.


Email: