Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE POTENTIAL OF MAGNESIUM-BASED MICRO CYLINDER FOR CARTILAGE AND BONE REGENERATION UTILIZING AN IN VITRO OSTEOARTHRITIS MODEL

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 1 of 2.



Abstract

Osteoarthritis (OA) is an inflammatory disease affecting the complete synovial joint including the cartilage layer and the subchondral bone plate. Due to the multifactorial causes and the not yet completely resolved molecular mechanisms, it lacks a gold standard treatment to mitigate OA. Hence, biomaterials capable of delaying or preventing OA are a promising alternative or supplement to antiphlogistic and surgical interventions. Magnesium (Mg) and its alloys are among the promising biomaterials with osteoinductive effects. This work investigated the impact of Mg micro cylinders (length ≈of 1.0 mm and width of 0.5 mm) in vitro, in favoring joint regeneration together with preventing OA progression. Therefore, a mesenchymal stem cell line (SCP-1) was applied in order to assess the compatibility of the degradable material. Furthermore, an in vitro OA model utilizing SCP-1 cells based on the supplementation of the cytokines; IL-1β, TNF-α was established and disclosed the capability of Mg microparticles in differentiating SCP-1 cells into chondrogenic and osteogenic lineages proven through extracellular matrix staining and gene marker analysis. A concentration above 10 mM revealed a reduction in the cell viability by 50 %. An increase in the expression of collagens especially and proteoglycans (COL2A1, Aggrecan) as extracellular matrix proteins as well as an increase in osteogenic marker (ALP, BMP2) favoring the mineralization process were observed. The inflammatory condition reduced the viability and productivity of the applied stem cell line. However, the application of Mg microparticles induced a cell recovery and reduction of inflammation marker such as MMP1 and IL6. The cytocompatible and the ability of Mg microparticles in supporting bone and cartilage repair mechanisms in vitro even under inflammatory conditions make biodegradable Mg microparticles a suitable implant material to treat OA therapy.

Acknowledgements: This project OAMag was funded by the German Research Foundation (project number 404534760). The author thank Dr. Björn Wiese (hereon) for the production of Mg based material and Prof. Böcker (MUM Musculoskeletal University Center Munich) for the provision of SCP-1 cell line.


Email: