Abstract
In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an in vivo model for investigation.