Abstract
Spinal fusion is one of the most common surgical procedures in spine surgery, whose primary objective is the stabilization of the spine for the treatment of many degenerative, traumatic and oncological diseases of the spine. Autologous bone is still considered the “gold standard” technique for spinal fusion. However, biomaterials which are potentially osteogenic, osteoinductive and osteoconductive can be used to increase the process of spinal fusion. We evaluated two new bone substitutes as an alternative to autologous bone for spinal fusion, using an animal model of large size (adult sheep).
A preclinical study was designed to compare the efficacy of SINTlife® Putty and DBSINT® biomaterials with conventional bone autograft in an ovine model of lumbar spine fusion. SINTlife® is a biomaterial made from hydroxyapatite enriched with magnesium ions, resulting to be very similar to natural bone. DBSint® is a paste composite bone, osteo-inductive, pliable and conformable, consisting of demineralized bone matrix (DBM) carried by hydroxyapatite biomimetics. Eighteen adult female sheep were selected for two-levels spine surgical procedures. The animals were divided in two groups: in Group A, one fusion level was treated with SINTlife® Putty and the other level received cortical-cancellous bone autograft; in Group B, one fusion level was treated with DBSINT® and the other level received cortical-cancellous bone autograft. At the end of the experimental time, all the animals were euthanized. The spine segments were analyzed macroscopically, radiographically, microtomographically, histologically and histomorphometrically.
The SINT-Life® Putty shows a perfect osteointegration in all the histological specimens. A high percentage of newly formed bone tissue is detected, with lots of trabeculae having structure and morphology similar to the pre-existing bone. In all the specimens collected from DBSINT®-treated animals the presence of hydroxyapatite alone is reported but not the demineralized bone matrix. The presence of newly formed bone tissue can be detected in all the specimens but newly formed bone shows very thin and irregular trabeculae next to the cartilage zone, while away from the border of ossification there are thicker trabeculae similar to the pre-existing bone.
The use of the experimental biomaterial SINT-Life® Putty in an ovine model of spine fusion leads to the development of newly formed bone tissue without qualitative and quantitative differences with the one formed with autologous bone. The experimental material DBSINT® seems to lead to less deposition of newly formed bone with wider intertrabecular spaces. Following these results, we planned and submitted to the Ethical Committee a clinical study to evaluate the safety and efficacy of SINT-Life® product in comparison to autologous bone, as an alternative treatment for spine fusion procedures.