Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 759 - 766
1 Dec 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus of ≥ one cortex on the 3D reconstruction and when present all achieved union. Compared to six-week radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8% sensitive and 100% specific to predict union). At 12 weeks, nine patients had bridging callus at ≥ one cortex on 3D reconstruction (100%-sensitive and 100%-specific to predict union). Presence of sonographic bridging callus on 3D reconstruction demonstrated excellent reviewer agreement on ICC at 0.87 (95% confidence interval 0.74 to 0.96). Conclusion. 3D fracture reconstruction can be created using multiple ultrasound images in order to evaluate the presence of bridging callus. This imaging modality has the potential to enhance the usability and accuracy of identification of early fracture healing. Cite this article: Bone Joint Res 2021;10(12):759–766


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion. Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing. Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304–312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 804 - 814
13 Oct 2022
Grammatopoulos G Laboudie P Fischman D Ojaghi R Finless A Beaulé PE

Aims

The primary aim of this study was to determine the ten-year outcome following surgical treatment for femoroacetabular impingement (FAI). We assessed whether the evolution of practice from open to arthroscopic techniques influenced outcomes and tested whether any patient, radiological, or surgical factors were associated with outcome.

Methods

Prospectively collected data of a consecutive single-surgeon cohort, operated for FAI between January 2005 and January 2015, were retrospectively studied. The cohort comprised 393 hips (365 patients; 71% male (n = 278)), with a mean age of 34.5 years (SD 10.0). Over the study period, techniques evolved from open surgical dislocation (n = 94) to a combined arthroscopy-Hueter technique (HA + Hueter; n = 61) to a pure arthroscopic technique (HA; n = 238). Outcome measures of interest included modes of failures, complications, reoperation, and patient-reported outcome measures (PROMs). Demographic, radiological, and surgical factors were tested for possible association with outcome.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 312 - 316
17 Apr 2024
Ryan PJ Duckworth AD McEachan JE Jenkins PJ

Aims

The underlying natural history of suspected scaphoid fractures (SSFs) is unclear and assumed poor. There is an urgent requirement to develop the literature around SSFs to quantify the actual prevalence of intervention following SSF. Defining the risk of intervention following SSF may influence the need for widespread surveillance and screening of SSF injuries, and could influence medicolegal actions around missed scaphoid fractures.

Methods

Data on SSF were retrospectively gathered from virtual fracture clinics (VFCs) across a large Scottish Health Board over a four-year period, from 1 January 2018 to 31 December 2021. The Bluespier Electronic Patient Record System identified any surgical procedure being undertaken in relation to a scaphoid injury over the same time period. Isolating patients who underwent surgical intervention for SSF was performed by cross-referencing the unique patient Community Health Index number for patients who underwent these scaphoid procedures with those seen at VFCs for SSF over this four-year period.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 117 - 122
9 Feb 2024
Chaturvedi A Russell H Farrugia M Roger M Putti A Jenkins PJ Feltbower S

Aims

Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation.

Methods

We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 749 - 757
12 Sep 2024
Hajialiloo Sami S Kargar Shooroki K Ammar W Nahvizadeh S Mohammadi M Dehghani R Toloue B

Aims

The ulna is an extremely rare location for primary bone tumours of the elbow in paediatrics. Although several reconstruction options are available, the optimal reconstruction method is still unknown due to the rarity of proximal ulna tumours. In this study, we report the outcomes of osteoarticular ulna allograft for the reconstruction of proximal ulna tumours.

Methods

Medical profiles of 13 patients, who between March 2004 and November 2021 underwent osteoarticular ulna allograft reconstruction after the resection of the proximal ulna tumour, were retrospectively reviewed. The outcomes were measured clinically by the assessment of elbow range of motion (ROM), stability, and function, and radiologically by the assessment of allograft-host junction union, recurrence, and joint degeneration. The elbow function was assessed objectively by the Musculoskeletal Tumor Society (MSTS) score and subjectively by the Toronto Extremity Salvage Score (TESS) and Mayo Elbow Performance Score (MEPS) questionnaire.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Open
Vol. 3, Issue 12 | Pages 960 - 968
23 Dec 2022
Hardwick-Morris M Wigmore E Twiggs J Miles B Jones CW Yates PJ

Aims

Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD.

Methods

In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 728 - 734
1 Oct 2023
Fokkema CB Janssen L Roumen RMH van Dijk WA

Aims

In the Netherlands, general practitioners (GPs) can request radiographs. After a radiologically diagnosed fracture, patients are immediately referred to the emergency department (ED). Since 2020, the Máxima Medical Centre has implemented a new care pathway for minor trauma patients, referring them immediately to the traumatology outpatient clinic (OC) instead of the ED. We investigated whether this altered care pathway leads to a reduction in healthcare consumption and concomitant costs.

Methods

In this retrospective cohort study, patients were included if a radiologist diagnosed a fracture on a radiograph requested by the GP from August to October 2019 (control group) or August to October 2020 (research group), on weekdays between 8.30 am and 4.00 pm. The study compared various outcomes between groups, including the length of the initial hospital visit, frequency of hospital visits and medical procedures, extent of imaging, and healthcare expenses.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims

In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance.

Methods

A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims

The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures.

Methods

A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.


Bone & Joint Open
Vol. 3, Issue 2 | Pages 114 - 122
1 Feb 2022
Green GL Arnander M Pearse E Tennent D

Aims

Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility

Methods

A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 984 - 994
1 Aug 2019
Rua T Malhotra B Vijayanathan S Hunter L Peacock J Shearer J Goh V McCrone P Gidwani S

Aims

The aim of the Scaphoid Magnetic Resonance Imaging in Trauma (SMaRT) trial was to evaluate the clinical and cost implications of using immediate MRI in the acute management of patients with a suspected fracture of the scaphoid with negative radiographs.

Patients and Methods

Patients who presented to the emergency department (ED) with a suspected fracture of the scaphoid and negative radiographs were randomized to a control group, who did not undergo further imaging in the ED, or an intervention group, who had an MRI of the wrist as an additional test during the initial ED attendance. Most participants were male (52% control, 61% intervention), with a mean age of 36.2 years (18 to 73) in the control group and 38.2 years (20 to 71) in the intervention group. The primary outcome was total cost impact at three months post-recruitment. Secondary outcomes included total costs at six months, the assessment of clinical findings, diagnostic accuracy, and the participants’ self-reported level of satisfaction. Differences in cost were estimated using generalized linear models with gamma errors.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims

Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design.

Patients and Methods

This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m2 and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (sd 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 595 - 600
1 Nov 2018
Bergiers S Hothi HS Henckel J Eskelinen A Skinner J Hart A

Objectives

Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event.

Methods

A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors.