Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Bone & Joint Research
Vol. 6, Issue 7 | Pages 446 - 451
1 Jul 2017
Pękala PA Henry BM Pękala JR Piska K Tomaszewski KA

Objectives. Inflammation of the retrocalcaneal bursa (RB) is a common clinical problem, particularly in professional athletes. RB inflammation is often treated with corticosteroid injections however a number of reports suggest an increased risk of Achilles tendon (AT) rupture. The aim of this cadaveric study was to describe the anatomical connections of the RB and to investigate whether it is possible for fluid to move from the RB into AT tissue. Methods. A total of 20 fresh-frozen AT specimens were used. In ten specimens, ink was injected into the RB. The remaining ten specimens were split into two groups to be injected with radiological contrast medium into the RB either with or without ultrasonography guidance (USG). Results. In specimens injected with ink, diffusion outside the RB was observed with staining of the anterior portion of the AT. In eight contrast-injected specimens (five USG, three non-USG), a similar localised diffusion pattern was observed, with the contrast identified superiorly and anteriorly. In two contrast-injected specimens (non-USG), the diffusion pattern was more extensive. Conclusion. This study confirmed the existence of connections between the RB and the AT, especially rich in the anteroinferior portion of the tendon, which should be considered a weak zone for substances injected into the RB. We hypothesise that this part of the AT might be most vulnerable to rupture after corticosteroid injections. Cite this article: P. A. Pękala, B. M. Henry, J. R. Pękala, K. Piska, K. A. Tomaszewski. The Achilles tendon and the retrocalcaneal bursa: An anatomical and radiological study. Bone Joint Res 2017;6:446–451. DOI:10.1302/2046-3758.67.BJR-2016-0340.R1


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article: Bone Joint Res 2022;11(8):561–574


Bone & Joint Research
Vol. 2, Issue 9 | Pages 186 - 192
1 Sep 2013
Boivin GP Platt KM Corbett J Reeves J Hardy AL Elenes EY Charnigo RJ Hunter SA Pearson KJ

Objectives. The goals of this study were: 1) to determine if high-fat diet (HFD) feeding in female mice would negatively impact biomechanical and histologic consequences on the Achilles tendon and quadriceps muscle; and 2) to investigate whether exercise and branched-chain amino acid (BCAA) supplementation would affect these parameters or attenuate any negative consequences resulting from HFD consumption. Methods. We examined the effects of 16 weeks of 60% HFD feeding, voluntary exercise (free choice wheel running) and BCAA administration in female C57BL/6 mice. The Achilles tendons and quadriceps muscles were removed at the end of the experiment and assessed histologically and biomechanically. Results. HFD feeding significantly decreased the Achilles tendon modulus without histological alterations. BCAA administration significantly decreased the stiffness of Achilles tendons in the exercised normal diet mice. Exercise partially ameliorated both the weight gain and glucose levels in the HFD-fed mice, led to a significant decrease in the maximum load of the Achilles tendon, and an increase in the average fibril diameter of the quadriceps femoris muscle. There were significant correlations between body weight and several biomechanical properties, demonstrating the importance of controlling obesity for maintaining healthy tendon properties. . Conclusions. In summary, this study showed a significant impact of obesity and body weight on tendon biomechanical properties with limited effects of exercise and BCAAs. Cite this article: Bone Joint Res 2013;2:186–92


Bone & Joint Research
Vol. 13, Issue 7 | Pages 315 - 320
1 Jul 2024
Choi YH Kwon TH Choi JH Han HS Lee KM

Aims. Achilles tendon re-rupture (ATRR) poses a significant risk of postoperative complication, even after a successful initial surgical repair. This study aimed to identify risk factors associated with Achilles tendon re-rupture following operative fixation. Methods. This retrospective cohort study analyzed a total of 43,287 patients from national health claims data spanning 2008 to 2018, focusing on patients who underwent surgical treatment for primary Achilles tendon rupture. Short-term ATRR was defined as cases that required revision surgery occurring between six weeks and one year after the initial surgical repair, while omitting cases with simultaneous infection or skin necrosis. Variables such as age, sex, the presence of Achilles tendinopathy, and comorbidities were systematically collected for the analysis. We employed multivariate stepwise logistic regression to identify potential risk factors associated with short-term ATRR. Results. From 2009 to 2018, the short-term re-rupture rate for Achilles tendon surgeries was 2.14%. Risk factors included male sex, younger age, and the presence of Achilles tendinopathy. Conclusion. This large-scale, big-data study reaffirmed known risk factors for short-term Achilles tendon re-rupture, specifically identifying male sex and younger age. Moreover, this study discovered that a prior history of Achilles tendinopathy emerges as an independent risk factor for re-rupture, even following initial operative fixation. Cite this article: Bone Joint Res 2024;13(7):315–320


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion. This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1


Bone & Joint Research
Vol. 4, Issue 4 | Pages 65 - 69
1 Apr 2015
Kearney RS Parsons N Underwood M Costa ML

Objectives

The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research.

Methods

We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area.


Bone & Joint Research
Vol. 2, Issue 10 | Pages 227 - 232
1 Oct 2013
Kearney RS Parsons N Costa ML

Objectives

To conduct a pilot randomised controlled trial to evaluate the feasibility of conducting a larger trial to evaluate the difference in Victorian Institute of Sports Assessment-Achilles (VISA-A) scores at six months between patients with Achilles tendinopathy treated with a platelet-rich plasma (PRP) injection compared with an eccentric loading programme.

Methods

Two groups of patients with mid-substance Achilles tendinopathy were randomised to receive a PRP injection or an eccentric loading programme. A total of 20 patients were randomised, with a mean age of 49 years (35 to 66). All outcome measures were recorded at baseline, six weeks, three months and six months.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims. Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy. Methods. Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs. Results. Overexpression of BRD4 enhanced while inhibition of Brd4 suppressed the osteogenic differentiation of hBMSCs in vitro. Overexpression of Brd4 increased the expression of mitotically associated long non-coding RNA (Mancr). Downregulation of Mancr suppressed the osteoinductive effect of BRD4. In vivo, inhibition of BRD4 by JQ1 significantly attenuated pathological bone formation in the ATP model (p = 0.001). Conclusion. BRD4 was found to be upregulated in HO and Brd4-Mancr-Runx2 signalling was involved in the modulation of new bone formation in HO. Cite this article: Bone Joint Res 2021;10(10):668–676


Bone & Joint Research
Vol. 9, Issue 9 | Pages 613 - 622
1 Sep 2020
Perucca Orfei C Lovati AB Lugano G Viganò M Bottagisio M D’Arrigo D Sansone V Setti S de Girolamo L

Aims. In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. Methods. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol. Results. The daily exposure to PEMFs generally provided an improvement in the fibre organization, a decrease in cell density, vascularity, and fat deposition, and a restoration of the physiological cell morphology compared to untreated tendons. These improvements were more evident when the tendons were exposed to PEMFs during the mid-acute phase of the pathology (7 days after induction) rather than during the early (1 day after induction) or the late acute phase (15 days after induction). Moreover, the exposure to PEMFs for 14 days during the mid-acute phase was more effective than for 7 days. Conclusion. PEMFs exerted a positive role in the tendon healing process, thus representing a promising conservative treatment for tendinopathy, although further investigations regarding the clinical evaluation are needed. Cite this article: Bone Joint Res 2020;9(9):613–622


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 504 - 511
23 Aug 2023
Wang C Liu S Chang C

Aims

This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model.

Methods

A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 561 - 569
1 Oct 2018
Yang X Meng H Quan Q Peng J Lu S Wang A

Objectives

The incidence of acute Achilles tendon rupture appears to be increasing. The aim of this study was to summarize various therapies for acute Achilles tendon rupture and discuss their relative merits.

Methods

A PubMed search about the management of acute Achilles tendon rupture was performed. The search was open for original manuscripts and review papers limited to publication from January 2006 to July 2017. A total of 489 papers were identified initially and finally 323 articles were suitable for this review.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 23 - 28
1 Jan 2020
Kurosawa T Mifune Y Inui A Nishimoto H Ueda Y Kataoka T Yamaura K Mukohara S Kuroda R

Aims

The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes.

Methods

Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro.


Aims

Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells.

Methods

Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Scx, TNC) expression were investigated using coculture system.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives

The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management.

Methods

A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 433 - 438
1 Jul 2017
Pan M Chai L Xue F Ding L Tang G Lv B

Objectives

The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures.

Methods

Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 656 - 664
1 Dec 2017
Morita W Dakin SG Snelling SJB Carr AJ

Objectives

Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified.

Methods

We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included.