Aims.
Aims. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against
Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt
Aims. Here we used a mature seven-day biofilm model of
Aims. This study aimed to explore the role of small colony variants (SCVs) of
Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against
Aims. Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the
Aims. Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of
Objectives. Nasal carriers of Staphylococcus (S.) aureus (MRSA and MSSA) have an increased risk for healthcare-associated infections. There are currently limited national screening policies for the detection of S. aureus despite the World Health Organization’s recommendations. This study aimed to evaluate the diagnostic performance of molecular and culture techniques in S. aureus screening, determine the cause of any discrepancy between the diagnostic techniques, and model the potential effect of different diagnostic techniques on S. aureus detection in orthopaedic patients. Methods. Paired nasal swabs for polymerase chain reaction (PCR) assay and culture of S. aureus were collected from a study population of 273 orthopaedic outpatients due to undergo joint arthroplasty surgery. Results. The prevalence of MSSA nasal colonization was found to be between 22.4% to 35.6%. The current standard direct culturing methods for detecting S. aureus significantly underestimated the prevalence (p = 0.005), failing to identify its presence in approximately one-third of patients undergoing joint arthroplasty surgery. Conclusion. Modelling these results to national surveillance data, it was estimated that approximately 5000 to 8000 S. aureus surgical site infections could be prevented, and approximately $140 million to $950 million (approximately £110 million to £760 million) saved in treatment costs annually in the United States and United Kingdom combined, by using alternative diagnostic methods to direct culture in preoperative S. aureus screening and eradication programmes. Cite this article: S. T. J. Tsang, M. P. McHugh, D. Guerendiain, P. J. Gwynne, J. Boyd, A. H. R. W. Simpson, T. S. Walsh, I. F. Laurenson, K. E. Templeton. Underestimation of
Objectives.
Aims. The purpose of this study was to determine whether intracellular
Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant
Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant
Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant
Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods.
Aims. Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting. Methods. Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with
Aims. Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on
Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of
Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with
Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant