Advertisement for orthosearch.org.uk
Results 1 - 20 of 746
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 825 - 831
1 Nov 2023
Joseph PJS Khattak M Masudi ST Minta L Perry DC

Aims. Hip disease is common in children with cerebral palsy (CP) and can decrease quality of life and function. Surveillance programmes exist to improve outcomes by treating hip disease at an early stage using radiological surveillance. However, studies and surveillance programmes report different radiological outcomes, making it difficult to compare. We aimed to identify the most important radiological measurements and develop a core measurement set (CMS) for clinical practice, research, and surveillance programmes. Methods. A systematic review identified a list of measurements previously used in studies reporting radiological hip outcomes in children with CP. These measurements informed a two-round Delphi study, conducted among orthopaedic surgeons and specialist physiotherapists. Participants rated each measurement on a nine-point Likert scale (‘not important’ to ‘critically important’). A consensus meeting was held to finalize the CMS. Results. Overall, 14 distinct measurements were identified in the systematic review, with Reimer’s migration percentage being the most frequently reported. These measurements were presented over the two rounds of the Delphi process, along with two additional measurements that were suggested by participants. Ultimately, two measurements, Reimer’s migration percentage and femoral head-shaft angle, were included in the CMS. Conclusion. This use of a minimum standardized set of measurements has the potential to encourage uniformity across hip surveillance programmes, and may streamline the development of tools, such as artificial intelligence systems to automate the analysis in surveillance programmes. This core set should be the minimum requirement in clinical studies, allowing clinicians to add to this as needed, which will facilitate comparisons to be drawn between studies and future meta-analyses. Cite this article: Bone Jt Open 2023;4(11):825–831


Bone & Joint Research
Vol. 12, Issue 10 | Pages 624 - 635
4 Oct 2023
Harrison CJ Plessen CY Liegl G Rodrigues JN Sabah SA Beard DJ Fischer F

Aims. To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health. Methods. Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale. Results. We included 3,329 response sets from 528 patients undergoing knee arthroplasty. These generally met the assumptions of unidimensionality, monotonicity, local independence, and measurement invariance. The HAAS items provided more information than OKS items at high levels of knee health. Combining both instruments resulted in higher test-level information than either instrument alone. The mean error between common scale scores derived from the OKS and HAAS was 0.29 logits. Conclusion. The common scale allowed more precise measurement of knee health than use of either the OKS or HAAS individually. These techniques for mapping PROM instruments may be useful for the standardization of outcome reporting, and pooling results across studies that use either PROM in individual-patient meta-analysis. Cite this article: Bone Joint Res 2023;12(10):624–635


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. Methods. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained. Results. Among 256 hips with AI outputs, all six hip AI measurements were successfully obtained. The AI-reader correlations were generally good (ICC 0.60 to 0.74) to excellent (ICC > 0.75). There was lower agreement for CCD angle measurement. Most widely used measurements for HD diagnosis (LCEA and Tönnis angle) demonstrated good to excellent inter-method reliability (ICC 0.71 to 0.86 and 0.82 to 0.90, respectively). The median reading time for the three readers and AI was 212 (IQR 197 to 230), 131 (IQR 126 to 147), 734 (IQR 690 to 786), and 41 (IQR 38 to 44) seconds, respectively. Conclusion. This study showed that AI-based software demonstrated reliable radiological assessment of patients with HD with significant interpretation-related time savings. Cite this article: Bone Jt Open 2022;3(11):877–884


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives. The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field. Methods. The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only. Results. A total of 29 articles were reviewed to obtain information on a number of variables. These comprised the type of device used for measurement, rater standardisation, the type of movements tested, body positioning and comparative studies of muscle strength in FAI versus normal controls. The studies found that hip muscle strength is lower in patients with FAI; this is also true for the asymptomatic hip in patients with FAI. Conclusions. Current literature on this subject is limited and examines multiple variables. Our recommendations for achieving reproducible results include stabilising the patient, measuring isometric movements and maximising standardisation by using a single tester and familiarising the participants with the protocol. Further work must be done to demonstrate the reliability of any new testing method. Cite this article: E. Mayne, A. Memarzadeh, P. Raut, A. Arora, V. Khanduja. Measuring hip muscle strength in patients with femoroacetabular impingement and other hip pathologies: A systematic review. Bone Joint Res 2017;6:66–72. DOI: 10.1302/2046-3758.61.BJR-2016-0081


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


Bone & Joint Research
Vol. 3, Issue 10 | Pages 289 - 296
1 Oct 2014
van IJsseldijk EA Harman MK Luetzner J Valstar ER Stoel BC Nelissen RGHH Kaptein BL

Introduction. Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts. . Method. Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision. . Results. The mean error in the model-based minimum joint space width measurement was significantly smaller than the conventional method for medial condyles (0.50 vs 0.94 mm, p < 0.01) and for lateral condyles (0.06 vs 0.34 mm, p = 0.02). The precision (standard deviation of the error) of the methods was similar (0.84 vs 0.79 mm medially and both 0.46 mm laterally). The distance between the true minimum joint space width locations and the locations from the model-based measurements was less than 10 mm in the medial direction in 12 cases and less in the lateral direction in 13 cases. Conclusion. The model-based minimum joint space width measurement method is more accurate than the conventional measurement with the same precision. Cite this article: Bone Joint Res 2014;3:289–96


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


Bone & Joint Research
Vol. 4, Issue 5 | Pages 78 - 83
1 May 2015
Martinkevich P Rahbek O Møller-Madsen B Søballe K Stilling M

Objectives. Lengthening osteotomies of the calcaneus in children are in general grafted with bone from the iliac crest. Artificial bone grafts have been introduced, however, their structural and clinical durability has not been documented. Radiostereometric analysis (RSA) is a very accurate and precise method for measurements of rigid body movements including the evaluation of joint implant and fracture stability, however, RSA has not previously been used in clinical studies of calcaneal osteotomies. We assessed the precision of RSA as a measurement tool in a lateral calcaneal lengthening osteotomy (LCLO). Methods. LCLO was performed in six fixed adult cadaver feet. Tantalum markers were inserted on each side of the osteotomy and in the cuboideum. Lengthening was done with a plexiglas wedge. A total of 24 radiological double examinations were obtained. Two feet were excluded due to loose and poorly dispersed markers. Precision was assessed as systematic bias and 95% repeatability limits. Results. Systematic bias was generally below 0.10 mm for translations. Precision of migration measurements was below 0.2 mm for translations in the osteotomy. Conclusion. RSA is a precise tool for the evaluation of stability in LCLO. Cite this article: Bone Joint Res 2015;4:78–83


Bone & Joint Research
Vol. 1, Issue 8 | Pages 180 - 191
1 Aug 2012
Stilling M Kold S de Raedt S Andersen NT Rahbek O Søballe K

Objectives. The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods. A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results. The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions. For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size


Bone & Joint Research
Vol. 10, Issue 6 | Pages 363 - 369
1 Jun 2021
MacDonald DRW Neilly DW Elliott KE Johnstone AJ

Aims

Tourniquets have potential adverse effects including postoperative thigh pain, likely caused by their ischaemic and possible compressive effects. The aims of this preliminary study were to determine if it is possible to directly measure intramuscular pH in human subjects over time, and to measure the intramuscular pH changes resulting from tourniquet ischaemia in patients undergoing knee arthroscopy.

Methods

For patients undergoing short knee arthroscopic procedures, a sterile calibrated pH probe was inserted into the anterior fascial compartment of the leg after skin preparation, but before tourniquet inflation. The limb was elevated for three minutes prior to tourniquet inflation to 250 mmHg or 300 mmHg. Intramuscular pH was recorded at one-second intervals throughout the procedure and for 20 minutes following tourniquet deflation. Probe-related adverse events were recorded.


Bone & Joint Research
Vol. 3, Issue 4 | Pages 95 - 100
1 Apr 2014
Kaneyama R Otsuka M Shiratsuchi H Oinuma K Miura Y Tamaki T

Objectives. Because posterior cruciate ligament (PCL) resection makes flexion gaps wider in total knee replacement (TKR), preserving or sacrificing a PCL affects the gap equivalence; however, there are no criteria for the PCL resection that consider gap situations of each knee. This study aims to investigate gap characteristics of knees and to consider the criteria for PCL resection. Methods. The extension and flexion gaps were measured, first with the PCL preserved and subsequently with the PCL removed (in cases in which posterior substitute components were selected). The PCL preservation or sacrifice was solely determined by the gap measurement results, without considering other functions of the PCL such as ‘roll back.’. Results. Wide variations were observed in the extension and flexion gaps. The flexion gaps were significantly larger than the extension gaps. Cases with 18 mm or more flexion gap and with larger flexion than extension gap were implanted with cruciate retaining component. A posterior substitute component was implanted with the other cases. Conclusions. In order to make adequate gaps, it is important to decide whether to preserve the PCL based on the intra-operative gap measurements made with the PCL intact. Cite this article: Bone Joint Res 2014;3:95–100


Bone & Joint Open
Vol. 3, Issue 12 | Pages 960 - 968
23 Dec 2022
Hardwick-Morris M Wigmore E Twiggs J Miles B Jones CW Yates PJ

Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. Methods. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements. Results. Strong correlations were observed for all EOS measurements (r. s. > 0.9). The strongest correlation with AP radiograph (inter-teardrop line) was observed for functional-ASIS-to-floor (functional) (r. s. = 0.57), much weaker than the correlations between EOS measurements. ASIS-to-ankle measurements exhibited a high correlation to other linear measurements and the highest ICC (r. s. = 0.97). Using anterior superior iliac spine (ASIS)-to-ankle, 33% of patients had an absolute LLD of greater than 10 mm, which was statistically different from the inter-teardrop LLD measurement (p < 0.005). Discussion. We found that the conventional measurement of LLD on AP pelvic radiograph does not correlate well with long leg measurements and may not provide a true appreciation of LLD. ASIS-to-ankle demonstrated improved detection of potential LLD than other EOS and radiograph measurements. Full length, functional imaging methods may become the new gold standard to measure LLD. Cite this article: Bone Jt Open 2022;3(12):960–968


Bone & Joint Open
Vol. 4, Issue 5 | Pages 363 - 369
22 May 2023
Amen J Perkins O Cadwgan J Cooke SJ Kafchitsas K Kokkinakis M

Aims. Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app). Methods. A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability. Results. All HS app measurements (from 5 raters at week 0 and week 2 and PACS rater) showed highly significant correlation with the PACS measurements (p < 0.001). Pearson’s correlation coefficient (r) was constantly over 0.9, suggesting high validity. Correlation of all HS app measures from different raters to each other was significant with r > 0.874 and p < 0.001, which also confirms high validity. Both inter- and intra-rater reliability were excellent with ICC > 0.9. In a 95% confidence interval for repeated measurements, the deviation of each specific measurement was less than 4% MP for single measurer and 5% for different measurers. Conclusion. The HS app provides a valid method to measure hip MP in CP, with excellent inter- and intra-rater reliability across different medical and allied health specialties. This can be used in hip surveillance programmes by interdisciplinary measurers. Cite this article: Bone Jt Open 2023;4(5):363–369


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims. In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. Methods. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis. Results. The results showed that the LLDS has high inter-rater reliability. As illustrated by the heat map, the distribution of Japanese Investigation Committee (JIC) classification type C necrotic lesions exhibited clustering characteristics, with the lesions being concentrated in the northern and eastern regions, forming a hot zone (90% probability) centred on the N4-N6E2, N3-N6E units of outer ring blocks. Statistical results showed that the distribution difference between type C2 and type C1 was most significant in the E1 and E2 units and, combined with the heat map, indicated that the spatial distribution differences at N3-N6E1 and N1-N3E2 units are crucial in understanding type C1 and C2 necrotic lesions. Conclusion. The LLDS can be used to accurately measure the spatial location of necrotic lesions and display their distribution characteristics. Cite this article: Bone Joint Res 2024;13(6):294–305


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1067 - 1071
2 Dec 2024
Salzmann M Kropp E Prill R Ramadanov N Adriani M Becker R

Aims. The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. Methods. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability. Results. The external rotation of the DCL to the sTEA was a mean of 9.47° (SD 3.06°), and a median of 9.2° (IQR 7.45° to 11.60°), with a minimum value of 1.7° and maximum of 16.3°. The measurements of the DCL demonstrated very good to excellent test-retest and inter-rater reliability coefficients (intraclass correlation coefficient 0.80 to 0.99). Conclusion. This study reveals a correlation between the sTEA and the DCL. Overall, 10° of external rotation of the dorsal femoral cortical bone to the sTEA may serve as a reliable landmark for initial position of the femoral component. Surgeons should be aware that there are outliers in this study in up to 17% of the measurements, which potentially could result in deviations of femoral component rotation. Cite this article: Bone Jt Open 2024;5(12):1067–1071


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Bone & Joint Research
Vol. 12, Issue 2 | Pages 138 - 146
14 Feb 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims. Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on trauma infrastructures. This study aims to identify what, and how, outcomes have been reported for people following open lower limb fracture over ten years. Methods. Systematic literature searches identified all clinical studies reporting outcomes for adults following open lower limb fracture between January 2009 and July 2019. All outcomes and outcome measurement instruments were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using an outcome taxonomy. Results. A total of 532 eligible studies were identified, reporting 1,803 outcomes with 786 unique outcome terms, which collapsed to 82 standardized outcome headings. Overall 479 individual outcome measurement instruments were identified, including 298 outcome definitions, 27 patient- and 18 clinician-reported outcome measures, and six physical performance measures. The most-reported outcome was ‘bone union/healing’ reported in over 50% of included studies, while health-related quality of life was only measured in 6% of included studies. Conclusion. Outcomes reported for people recovering from open lower limb fracture are heterogeneous, liable to outcome reporting bias, and vary widely in the definitions and the measurement tools used to collect them. Outcomes likely to be important to patients, such as quality of life and measures of physical functioning, have been neglected. This systematic review identifies the need to unify outcome measures reported on patients recovering from open lower limb fracture; this may be addressed by creating a core outcome set. Cite this article: Bone Joint Res 2023;12(2):138–146


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims. Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Methods. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. Results. At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. Conclusion. No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable. Cite this article: Bone Jt Open 2023;4(7):478–489