Arthroplasty has become increasingly popular to treat end-stage ankle arthritis. Iatrogenic posterior neurovascular and tendinous injury have been described from saw cuts. However, it is hypothesized that posterior ankle structures could be damaged by inserting tibial guide pins too deeply and be a potential cause of residual hindfoot pain. The preparation steps for ankle arthroplasty were performed using the Infinity total ankle system in five right-sided cadaveric ankles. All tibial guide pins were intentionally inserted past the posterior tibial cortex for assessment. All posterior ankles were subsequently dissected, with the primary endpoint being the presence of direct contact between the structure and pin.Aims
Methods
A pilon fracture is a severe ankle joint injury caused by high-energy trauma, typically affecting men of working age. Although relatively uncommon (5% to 7% of all tibial fractures), this injury causes among the worst functional and health outcomes of any skeletal injury, with a high risk of serious complications and long-term disability, and with devastating consequences on patients’ quality of life and financial prospects. Robust evidence to guide treatment is currently lacking. This study aims to evaluate the clinical and cost-effectiveness of two surgical interventions that are most commonly used to treat pilon fractures. A randomized controlled trial (RCT) of 334 adult patients diagnosed with a closed type C pilon fracture will be conducted. Internal locking plate fixation will be compared with external frame fixation. The primary outcome and endpoint will be the Disability Rating Index (a patient self-reported assessment of physical disability) at 12 months. This will also be measured at baseline, three, six, and 24 months after randomization. Secondary outcomes include the Olerud and Molander Ankle Score (OMAS), the five-level EuroQol five-dimenison score (EQ-5D-5L), complications (including bone healing), resource use, work impact, and patient treatment preference. The acceptability of the treatments and study design to patients and health care professionals will be explored through qualitative methods.Aims
Methods
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods