The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant design over a 12-year follow-up period, and whether patient-related factors were associated with loss to follow-up and mortality risk. Long-term follow-up of a randomized controlled trial was undertaken. A total of 212 patients were allocated a Triathlon or a Kinemax TKA. Patients were assessed preoperatively, and one, three, eight, and 12 years postoperatively using the Oxford Knee Score (OKS). Reasons for patient lost to follow-up, mortality, and revision were recorded.Aims
Methods
The surgical helmet system (SHS) was developed to reduce the risk of periprosthetic joint infection (PJI), but the evidence is contradictory, with some studies suggesting an increased risk of PJI due to potential leakage through the glove-gown interface (GGI) caused by its positive pressure. We assumed that SHS and glove exchange had an impact on the leakage via GGI. There were 404 arthroplasty simulations with fluorescent gel, in which SHS was used (H+) or not (H-), and GGI was sealed (S+) or not (S-), divided into four groups: H+S+, H+S-, H-S+, and H-S-, varying by exposure duration (15 to 60 minutes) and frequency of glove exchanges (0 to 6 times). The intensity of fluorescent leakage through GGI was quantified automatically with an image analysis software. The effect of the above factors on fluorescent leakage via GGI were compared and analyzed.Aims
Methods
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
Aim. Diagnosis of prosthetic joint infection are often complicated by the presence of biofilm, which hampers bacteria dislodging from the implants, thus affecting sensitivity of cultures. In the last 20 years several studies have evidenced the usefulness of implant sonication to improve microbial recovery from biofilm formed on inert substrates. More recently, treatment of prosthetic joints and tissues with Dithiothreitol, a sulphur compound already used in routine diagnostic workflow for fluidification of respiratory samples, has proved to be not inferior to sonication in microbiological diagnosis of prosthetic joint infections. This study aimed to evaluate if the combination of the two treatments could further improve microbial retrieval from biofilm in an in vitro model. Method. Three isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Eschericha coli and Pseudomonas aeruginosa responsible of prosthetic joint infections were used. They were grown onto 3 titanium discs (20 mm diameter) and incubated in 3 sterile plastic containers with 15 mL of Triptyc Soy Broth. After overnight incubation, not adhered cells were removed and fresh broth was added to each sample. After 48 hours incubation, the exausted broth was removed and one sample was used for sonication, one for treatment with 0,1% (v:v) Dithiothreitol and one treated with Dithiothreitol followed by sonication. Treated fluids were plated on Muller Hinton Agar plates for colony count. One-way
Arthritis is a common and debilitating disease and is associated with an increased fall risk. The purpose of this study was to examine the effect of impacted joint and limb on fall risk as measured by the margin of stability (MOS). There were 110 participants, including healthy controls (HC; n=30), ankle arthritis (AA; n=30), knee arthritis (KA; n=20) and hip arthritis (HA; n=30) patients. All protocols were Institutional Review Board approved and all participants signed informed consent. Participants walked approximately 6 meters at a self-selected pace. MOS was calculated in the foot coordinate system in the anterior/posterior (AP) and medial/lateral (ML) directions at heel strike. A one-way
Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This study aimed to establish an understanding of microdamage accumulation and load to failure in healthy and osteolytic vertebrae following cancer treatment (stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX)). Forty-two 6-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo) were studied; 22 were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Animals were randomly assigned to four groups: untreated (healthy=5, osteolytic=6), SBRT on day 14 (healthy=6, osteolytic=6), ZA on day 7 (healthy=4, osteolytic=5), and DTX on day 14 (healthy=5, osteolytic=5). Animals were euthanized on day 21. L1-L3 motion segments were compression loaded to failure and force-displacement data recorded. T13 vertebrae were stained with BaSO. 4. and µCT imaged (90kVp, 44uA, 4.9µm) to visualize microdamage location and volume. Damage volume fraction (DV/BV) was calculated as the ratio of BaSO. 4. to bone volume. Differences in mean load-to-failure were compared using three-way
We aimed to examine outcomes between displaced femoral neck fracture (FNF) patients managed with total hip arthroplasty (THA) or hemi-arthroplasty (HA) via the anterolateral vs. posterior approach. We used data from the HEALTH trial (1,441 patients aged ≥50 with displaced FNFs randomized to THA vs. HA). We calculated each patient's propensity to undergo arthroplasty via the posterior approach, and matched them to 1 control (anterolateral approach) based on age (±5 years), and propensity score. We used Chi-Square/Fisher-Exact tests to compare dichotomous outcomes, and repeated measures
Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs,
Introduction. Fibula shortening with an intact anterior tibiofibular ligament (ATFL) and medial ligament instability causes lateral translation of the talus. Our hypothesis was that the interaction of the AITFL tubercle of the fibular with the tibial incisura would propagate lateral translation due to the size differential. Aim. To assess what degree of shortening of the fibular would cause the lateral translation of the talus. Methodology. Twelve cadaveric ankle specimens were dissected removing all soft tissue except for ligaments. They were fixed on a specially-designed platform within an augmented ankle cage allowing tibial fixation and free movement of the talus. The fibula was progressively shortened in 5mm increments until complete ankle dislocation. The medial clear space was measured with each increment of shortening. Results. The larger AITFL tubercle interaction with the smaller tibial incisura caused a significant increase in lateral translation of the talus. This occurred in most ankles between 5–10mm of fibular shortening. The medial clear space widened following 5mm of shortening in 5 specimens (mean=2.0725, SD=±2.5338). All 12 specimens experienced widening by 10mm fibula shortening (Mean=7.2133mm, SD=±2.2061). All specimens reached complete dislocation by 35mm fibula shortening. Results of
Hypermobility Spectrum Disorder (HSD or hEDS) is attributed to a collagen abnormality associated with excessive joint flexibility. Approximately 90% of females with hip dysplasia have hypermobility. Manifestations of hypermobility in various body systems are unique to every patient, affecting different tissues of the body with varying degrees of severity. Our purposes were to identify the manifestations of hypermobility across multiple body systems and to study the recognition of hypermobility in the medical literature of multiple specialties over multiple decades. A literature search of the major medical disciplines for key words associated with HSD was performed. These specialties included gastroenterology, gynecology, neurology, psychiatry, oral-maxillofacial surgery, cardiology, and orthopaedic surgery. A specialty-specific impact factor (IF) score was calculated as the percentage of research articles that referenced hypermobility as a comorbidity over all articles within that specialty. Statistical differences were identified using single factor
This study investigated concurrent talar dome injuries associated with tibial pilon fractures, mapping their distribution across the proximal talar dome articular surface. It compared the two main mechanisms of injury (MOI), falling from a height and motor vehicle accident (MVA), and whether the fractures were open or closed. From a previously compiled database of acute distal tibial pilon fractures (AO/OTA 43B/C) in adults of 105 cases, 53 cases were identified with a concurrent injury to the talar dome with a known mechanism of injury and in 44 it was known if the fracture was open or closed. Case specific 2D injury maps were created using a 1x1mm grid, which were overlayed in an Excel document to allow for comparative analyses. A two-way
The study compared thigh-shank and shank-foot coordination during gait before and after total knee arthroplasty (TKA) with controls (CTRL). Twenty-seven patients (male=15/female=12; age=63.2±6.9 years) were evaluated one month prior to and twelve months after surgery, and compared to 27 controls (male=14/female=13; age=62.2±4.3). The participants were outfitted with a full-body marker set. Gait speed (normalized by leg length) was calculated. The time series of the thigh, shank, and foot orientation in relation to the laboratory coordinate system were extracted. The coordination between the thigh-shank and shank-foot in the sagittal plane were calculated using a vector coding technique. The coupling angles were categorized into four coordination patterns. The stance phase was divided into thirds: early, mid, and late stance. The frequency of each pattern and gait speed were compared using a one-way
Introduction. Knee dislocations, vascular injuries and floating knee injuries can be initially managed by a external fixator. Fixator design constructs include the AO pattern and the Diamond pattern. However, these traditional constructs do not adhere to basic principles of external fixation. The Manchester pattern knee-spanning external fixator is a new construct pattern, which uses beam loading and multiplanar fixation. There is no data on any construct pattern. This study compares the stability of these designs. Materials & Methods. Hoffman III (Stryker, USA) external fixation constructs were applied to articulated models of the lower limb, spanning the knee with a diamond pattern and a Manchester pattern. The stiffness was loaded both statically and cyclically with a Bose 3510 Electroforce mechanical testing jig (TA Instruments). A ramp to load test was performed initially and cyclical loading for measurement of stiffness over the test period. The results were analysed with a paired t-test and
Polymethylmethacrylate (PMMA) bone cement is strong in compression, however it tends to fail under torsion. Sufficient pressurisation and subsequent interdigitation between cement and bone are critical for the mechanical interlock of cemented orthopaedic implants, and an irregular surface on the acetabular cup is necessary for reasonable fixation at the cup-cement interface. There is limited literature investigating discrepancies in the failure mechanisms of cemented all-polyethylene acetabular cups with and without cement spacers, under torsional loading. In vitro experimental comparison of three groups of polyethylene acetabular prosthesis (PAP) cemented into prepared sawbone hemipelvises:. * PAP without PMMA spacers maintaining an equal cement mantle circumferentially. (Group 1 n=3). * PAP without PMMA spacers cemented deliberately ‘bottoming-out’ the implant within the acetabulum. (Group 2 n=3). * PAP with PMMA spacers. (Group 3 n=3). The constructs were tested to torstional failure on a custom designed setup, and statistical analysis done by a one-way
Introduction. Pes cavovarus is a foot deformity that can be idiopathic (I-PC) or acquired secondary to other pathology. Charcot-Marie-Tooth disease (CMT) is the most common adult cause for acquired pes cavovarus deformity (CMT-PC). The foot morphology of these distinct patient groups has not been previously investigated. The aim of this study was to assess if morphological differences exist between CMT-PC, I-PC and normal feet (controls) using weightbearing computed tomography (WBCT). Methods. A retrospective analysis of WBCT scans performed between May 2013 and June 2017 was undertaken. WBCT scans from 17 CMT-PC, 17 I-PC and 17 healthy normally-aligned control feet (age-, side-, sex- and body mass index-matched) identified from a prospectively collected database, were analysed. Eight 2-dimensional (2D) and three 3-dimensional (3D) measurements were undertaken for each foot and mean values in the three groups were compared using one-way
The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs), by the evaluation of its hydroxyapatite (HA), in vitro is 99mTc-HDP-Labelling. 99mTc-HDP (tracer) binds rapidly to HA and this uptake can be visualized and quantified. This study was performed to evaluate if this method is suitable to perform a real-time assessment during an ongoing cell culture and if the radioactive tracer may influence the cells and their ability to differentiate. BM-MSCs (n=3) were cultivated in 35mm-dishes. Groups 1 and 3 received DMEM-LG based osteogenic media while Groups 2 und 4 were non-osteogenic controls. Groups 1 and 2 (multi-labelling) were incubated with 5 MBq 99mTc-HDP for 30min on day 7 (d7) and the bound activity was measured using an activimeter. Subsequently the cell-culture was continued and again labelled with 99mTc-HDP on day 14 and 21 (d14, d21). Groups 3 and 4 (single labelling), cultivation of the respective triplicates, ended on day 7, 14 and 21 (d7, d14, d21) followed by 99mTc-HDP-Labelling. Statistical analysis using one-factor
3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way
To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision. CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the glenohumeral joint fixed with fully bonded contact interfaces. Static analysis was performed in Abaqus. The bone was divided at every 5% bone length beginning distally. Statistical analysis was performed on maximum von Mises stresses in cortical and cancellous bone across each slice using one-way
Nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is key in maintaining redox homeostasis and the pathogenesis of osteoarthritis (OA) involves oxidative distress. We thus investigated whether Nrf2/ARE signaling may control expression of key chondrogenic differentiation and hyaline cartilage maintenance factor SOX9. In human C-28/I2 chondrocytes SOX9 expression was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap “n” collar homology-associated protein 1 (Keap1). Putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL–TK for dual-luciferase assays to verify whether Nrf2 transcriptionally regulates SOX9. SOX9 promoter activity without and with Nrf2-inducer methysticin were analyzed. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Data were analyzed by one-way
Patients with bone and muscle weakness from disuse have higher risk of fracture and worse post-injury mortality rates. The goal of this current study was to better inform post-fracture rehabilitation strategies by investigating if physical remobilization following disuse by hindlimb unloading improves osteochondral callus formation compared to continued disuse by hindlimb suspension (HLS). We hypothesized that continued HLS would impair callus bone and cartilage formation and that physical rehabilitation after HLS would increase callus properties. All animal procedures were approved by the VCU IACUC. Skeletally mature, male and female C57BL/6J mice (18 weeks) underwent HLS for 3 weeks. Mice then had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). Mice were then either randomly assigned to continued HLS or allow normal physical weight-bearing remobilization (HLS + R). Mice allowed normal cage activity throughout the experiment served as controls (GC). All mice were sacrificed 14-days following fracture with 4-8 mice (male and female) per treatment. Data analyzed by respective