Advertisement for orthosearch.org.uk
Results 1 - 20 of 58
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 183 - 183
1 Mar 2008
Sasaki T Yabuki Y Hotta H Yanagimoto S
Full Access

Dislocation after total hip arthroplasty (THA) remains a significant clinical problem. The acetabular cup position is one of the main factors in the incidence of dislocation after THA. We reviewed dislocation cases in 247 primary THA. Between 1997 and 2001, 247 patients underwent a primary THA procedure. The original diagnoses in these patients were as follows: osteoarthritis (OA, n = 190), osteonecrosis (ION, n=28), rheumatiod arthritis (RA, n=16), and rapidly destructive coxarthropathy (RDC, n=13). A posterolateral approach was used in all cases. We examined mainly the acetabular cup position (ante-version and inclination angle) using anteroposterior radiographs. Six dislocations (2.4%) occurred : three anterior dislocations and three posterior dislocations. Dislocation rate according to the original diagnoses were as follows, 2 dislocations in OA (1.1%), 2 dislocations in RA(12.5%), 2 dislocations in RDC(15.4%) and no dislocation in ION. All cases were treated with close reduction and no component revision was needed. On X-P measurement of setting the acetabular cup in all cases, the mean ante-version angle was 16.3617;6.8 degrees and inclination angle was 43.3& #61617;7.3 degrees. In comparison with these measurement values, there was no statistical difference between the dislocation groups and no-dislocation groups. The number of the cases within Lewinnek’s safe zone in acetabular cup was 178 (72%). The dislocation rate in these 178 cases was low (1.1%). Setting the acetabular cup in adequate position is one of the major factors avoiding dislocation after THA. We have been performimg computer - assisted THA since 2003. Computer - assisted surgery enables the acetabular cup position to be precisely planned before surgery and allows superior positioning during surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2018
MacDonald S Howard J Goyal P Yuan X Lanting B Teeter M Naudie D McCalden R
Full Access

Lewinnek's safe zone recommendation to minimise dislocations was a target of 5–25° for anteversion angle and 30–50° for inclination angle. Subsequently, it was demonstrated that mal-positioning of the acetabular cup can also lead to edge loading, liner fracture, and greater conventional polyethylene wear. The purpose of this study was to measure the effect of acetabular cup position on highly crosslinked polyethylene wear in total hip arthroplasty (THA) at long-term follow-up. We identified all patients that underwent primary THA with a minimum of 10 years follow-up using an institutional database in London, Ontario, Canada. Patients with a single implant design consisting of a 28 mm cobalt chromium head and highly crosslinked polyethylene liner (ram extruded, GUR 1050, 100 kGy gamma irradiated, remelted, ethylene oxide sterilised) were selected for inclusion. In total, 85 hips from 79 recruited patients were analysed. Patients underwent a supine radiostereometric analysis (RSA) exam in which the x-ray sources and detectors were positioned to obtain an anterior-posterior and cross-table lateral radiograph. Acetabular cup anteversion angle, inclination angle, and 3D penetration rate (including wear and creep) were measured from the stereo radiograph pairs. At a mean follow-up of 13 years (range, 10–17 years) the mean penetration rate was 0.059 mm/year (95% CI: 0.045 to 0.073 mm/year). Mean anteversion angle was 18.2° (range, −14 to 40°) and mean inclination angle was 43.6° (range, 27 to 61°). With respect to the Lewinnek safe zone, 67% hips met the target for anteversion angle, 77% met the target for inclination angle, and 51% met the target for both. There was no correlation between anteversion angle and penetration rate (r = −0.14, p = 0.72) or between inclination angle and penetration rate (r = 0.11, p = 0.35). There was also no difference (p = 0.07) in penetration rate between hips located within the Lewinnek safe zone for both anteversion angle and inclination angle (mean 0.057 mm/year, 95% CI: 0.036 to 0.079 mm/year) and those outside the safe zone (mean 0.062 mm/year, 95% CI: 0.042 to 0.083 mm/year). Acetabular cup position had no effect on the wear rate of highly crosslinked polyethylene at long-term follow-up. Although care should still be taken to correctly position the acetabular cup for stability, highly crosslinked polyethylene is a forgiving bearing material that can withstand a wide range of cup positions without negatively impacting longevity due to wear


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 167 - 167
1 Mar 2008
Hotta H Yabuki Y Sasaki T Yamaguchi K Yanagimoto S
Full Access

Since the autumn of 2003, a computer-assisted system (VectorVision® Hip, version 2.1, Brain LAB, Germany) has been used to perform total hip arthroplasty (THA) operations in our hospital. In the present study, the postoperative acetabular cup position was evaluated using the records of the system and the data measured from postoperative radiographs. To date, 18 patients have been treated using this-system. We studied the cup inclination and anteversion records in this system recorded in the THA procedures. We also measured the cup inclination and anteversion using postoperative radiographs, according to the method described by Pradhan. The inclination and ante-version were the ‘operative’angles for this system and were the ‘radio graphical’ ones for measuring from the radiographs according to the definition described by Murray. The initial planning of the acetabular cup position was 45° ‘operative’ inclination and 20° ‘operative’ ante-version. From the system records, the average ‘operative’ inclination was 46.5°± 3.9° and the average ‘operative’ anteversion was 25.5°± 6.0°. The average ‘radio graphical’ inclination measured from the postoperative radiographs was 49.0°± 6.0°, and the average ‘radio graphical’ anteversion was 10.6°± 5.8°. Between the ‘operative’ angles from this system and the ‘radio graphical’ angles from the postoperative radiographs, the inclination was approximately the same, while the anteversion was different. When the ‘radio graphical’ anteversion was corrected for X-ray beam spreading and then converted to the ‘operative’ anteversion, the resulting ‘operative’ anteversion was 21.1°± 7.8°. And when the ‘operative’ anteversion recorded by this system was corrected for the pelvic tilt, the corrected ‘operative’ anteversion was 22.1°± 6.5°. The average difference between these corrected ‘operative’ anteversion in each case was 5.8°± 3.8°. Especially in 10 of the 18 cases, each difference was within 5°. The accuracy of the cup position using this computer-assisted system was shown by this study


Introduction. Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the CT-based navigation system in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Methods. We studied 31 hips of 28 patients who underwent the robotic-assisted hip arthroplasty (MAKO group) between August 2018 and March 2019 and 119 hips of 112 patients who received THA under CT-based navigation (CT-navi group) between September 2015 and November 2018. The preoperative diagnosis of all patients was osteoarthritis secondary to developmental dysplasia of the hip. They received the same cementless cup (Trident, Stryker). Robotic-assisted hip arthroplasty were performed by four surgeons while THA under CT-based navigation were performed by single senior surgeon. Target angle was 40 degree of radiological cup inclination (RI) and 15 degree of radiological cup anteversion (RA) in all patients. Propensity score matching was used to match the patients by gender, age, weight, height, BMI, and surgical approach in the two groups and 30 patients in each group were included in this study. Postoperative cup position was assessed using postoperative anterior-posterior pelvic radiograph by the Lewinnek's methods. The differences between target and postoperative cup position were investigated. Results. The acetabular cup position of all cases in both Mako and CT-navi group within Lewinnek's safe zone (RI: 40±10 degree; RA: 15±10 degree) in group were within this zone. Three was no significant difference of RI between Mako and CT-navi group (40.0 ± 2.1 degree vs 39.7± 3.6 degree). RA was 15.0 ± 1.2 degree and 17.0 ± 1.9 degree in MAKO group and in CT-navi group, respectively, with significant difference (p<0.001). The differences of RA between target and postoperative angle were smaller in MAKO group than CT-navi group (0.60± 1.05 degree vs 2.34± 1.40 degree, p<0.001). The difference or RI in MAKO group was smaller than in CT-navi, however, there was no significance between them (1.67± 1.27 degree vs 2.39± 2.68 degree, p=0.197). Conclusions. Both the assistance of the robotic arm and the CT-based navigation system were helpful to achieve the acetabular cup implantation, however, MAKO system achieved more accurate acetabular cup implantation than CT-based navigation system in total hip arthroplasty for the patients with OA secondary to DDH. Longer follow-up is necessary to investigate the clinical outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 138 - 138
1 Apr 2019
Harold R Delagrammaticas D Stover M Manning DW
Full Access

Background. Supine positioning during direct anterior approach total hip arthroplasty (DAA THA) facilitates use of fluoroscopy, which has been shown to improve acetabular component positioning on plane radiograph. This study aims to compare 2- dimensional intraoperative radiographic measurements of acetabular component position with RadLink to postoperative 3- dimensional SterEOS measurements. Methods. Intraoperative fluoroscopy and RadLink (El Segundo, CA) were used to measure acetabular cup position intraoperatively in 48 patients undergoing DAA THA. Cup position was measured on 6-week postoperative standing EOS images using 3D SterEOS software and compared to RadLink findings using Student's t-test. Safe-zone outliers were identified. We evaluated for measurement difference of > +/− 5 degrees. Results. RadLink acetabular cup abduction measurement (mean 43.0°) was not significantly different than 3D SterEOS in the anatomic plane (mean 42.6°, p = 0.50) or in the functional plane (mean 42.7°, p = 0.61) (Fig. 1–2). RadLink acetabular cup anteversion measurement (mean 17.9°) was significantly different than 3D SterEOS in both the anatomic plane (mean 20.6°, p = 0.022) and the functional plane (mean 21.2°, p = 0.002) (Fig. 3–4). RadLink identified two cups outside of the safe-zone. However, SterEOS identified 12 (anatomic plane) and 10 (functional plane) outside of the safe-zone (Fig. 5–7). In the functional plane, 58% of anteversion and 92% of abduction RadLink measurements were within +/− 5° of 3D SterEOS. Conclusion. Intraoperative fluoroscopic RadLink acetabular anteversion measurements are significantly different than 3D SterEOS measurements, while abduction measurements are similar. Significantly more acetabular cups are placed outside of the safe- zone when evaluated with 3D SterEOS versus RadLink


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup.

One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered

The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted.

When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions.

The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles.

The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 178 - 178
1 Mar 2013
Funayama A Okubo M Shimizu H Kawasakiya S Fujie A Toyama Y
Full Access

Introduction

The goal of total hip arthroplasty (THA) should be to reconstruct the acetabulum by positioning the hip center as close as possible to the anatomical hip center. However, the true position of the anatomic hip center can be difficult to determine during surgery on an individual basis. In 2005, we designed, produced an acetabular reaming guide, and clinically used to enable cup placement in the ideal anatomical position. This study was examined the accuracy the reaming guide for THA in prospective study.

Methods

This guide was applied consecutive 230 patients in primary THA. During planning, the distance from the acetabular edge to the reaming center and from the center to the perpendicular of the inter-teardrop line was measured on an anteroposterior (AP) X-ray. The reaming guide was adjusted depend on the reaming center by based planning. Acetabular reaming was performed with the process reamer.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 41 - 41
1 Oct 2018
Tatka J Brady AW Matta JM
Full Access

Introduction

Accurate acetabular position is an important goal during THA. It is also well known that accurate acetabular positioning is very frequently not achieved, even by experienced, high volume surgeons. Problems associated with cup malposition are: dislocation, accelerated poly wear, impingement, ceramic squeaking, metalosis. Murray et al described 3 methods of measurement and assessment of acetabular inclination and anteversion (I&A): anatomic, radiographic and operative. It is the hypothesis of the authors, that the differences and details of these 3 methods are poorly understood by many surgeons and this is contributory to inconsistent cup positioning. Additionally, the radiographic method, which is most commonly used for post op assessment and academic studies, contributes to misunderstanding and error. Modern computer guidance and software assessment of radiographs allows us to easily measure anatomic I&A which should be thought of as “true” I&A.

Methods

The mathematical criteria for radiographic measurement of anatomic I&A are defined as well as the mathematical relationships and discrepancies between anatomic and radiographic I&A for any given cup.

A = A n g l e o f a n t e v e r s i o n o f c u p I = A n g l e o f i n c l i n a t i o n o f c u p

E = Angle of ellipse major diameter to horizontal

E = Radiographic inclination

Sin A = H o r i z o n t a l w i d t h o f e l l i p s e L e n g t h o f e l l i p s e m a j o r d i a m e t e r Sin I = V e r t i c a l h e i g h t o f e l l i p s e L e n g t h o f e l l i p s e m a j o r d i a m e t e r

Tan I = Tan E / Cos A

Tan E = (Tan I) x (Cos A)


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 105 - 105
10 Feb 2023
Xu J Veltman W Chai Y Walter W
Full Access

Navigation in total hip arthroplasty has been shown to improve acetabular positioning and can decrease the incidence of mal-positioned acetabular components. The aim of this study was to assess two surgical guidance systems by comparing intra-operative measurements of acetabular component inclination and anteversion with a post-operative CT scan. We prospectively collected intra-operative navigation data from 102 hips receiving conventional THA or hip resurfacing arthroplasty through either a direct anterior or posterior approach. Two guidance systems were used simultaneously: an inertial navigation system (INS) and optical navigation system (ONS). Acetabular component anteversion and inclination was measured on a post-operative CT. The average age of the patients was 64 years (range: 24-92) and average BMI was 27 kg/m. 2. (range 19-38). 52% had hip surgery through an anterior approach. 98% of the INS measurements and 88% of the ONS measurements were within 10° of the CT measurements. The mean (and standard deviation) of the absolute difference between the post-operative CT and the intra-operative measurements for inclination and anteversion were 3.0° (2.8) and 4.5° (3.2) respectively for the ONS, along with 2.1° (2.3) and 2.4° (2.1) respectively for the INS. There was significantly lower mean absolute difference to CT for the INS when compared to ONS in both anteversion (p<0.001) and inclination (p=0.02). Both types of navigation produced reliable and reproducible acetabular cup positioning. It is important that patient-specific planning and navigation are used together to ensure that surgeons are targeting the optimal acetabular cup position. This assistance with cup positioning can provide benefits over free-hand techniques, especially in patients with an altered acetabular structure or extensive acetabular bone loss. In conclusion, both ONS and INS allowed for adequate acetabular positioning as measured on postoperative CT, and thus provide reliable intraoperative feedback for optimal acetabular component placement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2020
Abe I Shirai C
Full Access

Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°. Three-dimensional planning images of the cup positioning were obtained from the ZedHip® software, and the distances between the edge of the implant and anatomical landmarks such as the edge of the anterior or superior acetabular wall were measured on the three-dimensional images and recorded (Fig.2). Intraoperatively, the RI and RA were confirmed by reference to these distances and the acetabular cup was inserted. Relative positional information of the implant was extracted from postoperative CT imaging using the ZedHip® software and used to reproduce the position of the implant on preoperative CT imaging with the software image matching function. The difference between the preoperative planning and the actual implant position was measured to assess the accuracy of acetabular cup positioning using the ZedHip® software. Results. Actual cup size corresponded with that of preoperative planning in 95% of cases (114 hips). Postoperative mean RI was 42.3° ± 4.2° (95% confidence interval (CI), 41.5° ∼ 43.0°) and mean RA was 16.1° ± 5.9° (95%CI, 15.0° ∼ 17.1°). Deviation from the target RI was 4.2° ± 3.7° (95%CI, 3.5° ∼ 4.9°) and deviation from the target RA was 4.0° ± 3.6° (95%CI, 3.4° ∼ 4.7°). Overall 116 hips (96.7%) were within the RI safe zone (30° ∼ 50°) and 108 hips (90.0%) were within the RA safe zone (5° ∼ 25°), and 105 hips (87.5%) were within both the RI and RA safe zones (Fig.3). Mean cup shift from preoperative planning was 0.0mm ± 3.0mm to the cranial side in the cranio-caudal direction, 2.1mm ± 3.0mm to the anterior side in the antero-posterior direction, and 1.7mm ± 2.1mm to the lateral side in the medio-lateral direction. Conclusion. The accuracy of acetabular cup positioning using our method of CT-based three-dimensional THA preoperative planning was slightly inferior to reported values for CT-based navigation, but obviously superior to those without navigation and similar to those with portable navigation. CT-based three-dimensional THA preoperative planning is effective for acetabular cup positioning, and has better cost performance than expensive CT-based navigation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 34 - 34
10 Feb 2023
Farey J Chai Y Xu J Sadeghpour A Marsden-Jones D Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems have the potential to improve acetabular cup position in total hip arthroplasty (THA), thereby reducing the risk of revision surgery. This study aimed to evaluate the accuracy of three alternate registration planes in the supine surgical position generated using imageless navigation for patients undergoing THA via the direct anterior approach (DAA). Fifty-one participants who underwent a primary THA for osteoarthritis were assessed in the supine position using both optical and inertial sensor imageless navigation systems. Three registration planes were recorded: the anterior pelvic plane (APP) method, the anterior superior iliac spines (ASIS) functional method, and the Table Tilt (TT) functional method. Post-operative acetabular cup position was assessed using CT scans and converted to radiographic inclination and anteversion. Two repeated measures analysis of variance (ANOVA) and Bland-Altman plots were used to assess errors and agreement of the final cup position. For inclination, the mean absolute error was lower using the TT functional method (2.4°±1.7°) than the ASIS functional method (2.8°±1.7°, ρ = .17), and the ASIS anatomic method (3.7°±2.1, ρ < .001). For anteversion, the mean absolute error was significantly lower for the TT functional method (2.4°±1.8°) than the ASIS functional method (3.9°±3.2°, ρ = .005), and the ASIS anatomic method (9.1°±6.2°, ρ < .001). All measurements were within ± 10° for the TT method, but not the ASIS functional or APP methods. A functional registration plane is preferable to an anatomic reference plane to measure intra-operative acetabular cup inclination and anteversion accurately. Accuracy may be further improved by registering patient location using their position on the operating table rather than anatomic landmarks, particularly if a tighter target window of ± 5° is desired


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 9 - 9
1 Nov 2021
Farey J Chai Y Xu J Sadegpour A Jones DM Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems in total hip arthroplasty (THA) improve acetabular cup position, thereby reducing the risk of revision surgery for all causes as well as dislocation. We aimed to evaluate the registration accuracy of 3 alternate registration planes. A prospective, observational study was conducted with 45 THA in the supine position using two imageless navigation systems and 3 registration planes. Patient position was registered sequentially using an optical system (Stryker OrthoMap) and an inertial sensor-based system (Navbit Sprint) with 3 planes of reference: (Plane 1) an anatomical plane using the anterior superior iliac spines (ASISs) and the pubic symphysis; (Plane 2) a functional plane parallel to the line between the ASISs and the table plane; and, (Plane 3) a functional plane that was perpendicular to the gravity vector and aligned with the longitudinal axis of the patient. The 3 measurements of acetabular cup inclination and anteversion were compared with the measurements from postoperative computed tomography (CT) scans. For inclination, the mean absolute error was significantly lower for Plane 3 (1.80°) than for Plane 2 (2.74°), p = .038 and was lower for both functional planes than for the anatomical plane (3.75°), p < .001. For anteversion, the mean absolute error was significantly lower for Plane 3 (2.00°) than for Plane 2 (3.69°), p = .004 and was lower for both functional planes than for the anatomical plane (8.58°), p < .001. Patient registration using functional planes more accurately measured the acetabular cup position than registration using anatomic planes


Abstract. Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation and impingement, Transverse acetabular ligament (TAL) have been shown to be a reliable landmark to guide optimum acetabular cup position. Reports of iliopsoas impingement caused by acetabular components exist. The Psoas fossa (PF) is not a well-regarded landmark for Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. A total of 22 cadavers were implanted on 4 occasions with the an uncemented acetabular component. Measurements were taken between the inner edge of TAL and the base of the acetabular component and the distance between the lower end of the PF and the most medial end of TAL. The distance between the edge of the acetabular component and TAL was a mean of 1.6cm (range 1.4–18cm). The distance between the medial end of TAL and the lowest part of PF was a mean of 1.cm (range 1,3–1.8cm) It was evident that the edge of PF was not aligned with TAL. Optimal acetabular component position is vital to the longevity and outcome following THA. TAL provides a landmark to guide acetabular component position. However we feel the PF is a better landmark to allow appropriate positioning of the acetabular component inside edge of the acetabulum inside the bone without exposure of the component rim and thus preventing iliopsoas impingement at the psoas notch and resultant groin pain


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 29 - 29
19 Aug 2024
Kayani B Konan S Tahmassebi J Giebaly D Haddad FS
Full Access

The direct superior approach (DSA) is a modification of the posterior approach (PA) that preserves the iliotibial band and short external rotators except for the piriformis or conjoined tendon during total hip arthroplasty (THA). The objective of this study was to compare postoperative pain, early functional rehabilitation, functional outcomes, implant positioning, implant migration, and complications in patients undergoing the DSA versus PA for THA. This study included 80 patients with symptomatic hip arthritis undergoing primary THA. Patients were prospectively randomised to receive either the DSA or PA for THA, surgery was undertaken using identical implant designs in both groups, and all patients received a standardized postoperative rehabilitation programme. Predefined study outcomes were recorded by blinded observers at regular intervals for two-years after THA. Radiosteriometric analysis (RSA) was used to assess implant migration. There were no statistical differences between the DSA and PA in postoperative pain scores (p=0.312), opiate analgesia consumption (p=0.067), and time to hospital discharge (p=0.416). At two years follow-up, both groups had comparable Oxford hip scores (p=0.476); Harris hip scores (p=0.293); Hip disability and osteoarthritis outcome scores (p=0.543); University of California at Los Angeles scores (p=0.609); Western Ontario and McMaster Universities Arthritis Index (p=0.833); and European Quality of Life questionnaire with 5 dimensions scores (p=0.418). Radiographic analysis revealed no difference between the two treatment groups for overall accuracy of acetabular cup positioning (p=0.687) and femoral stem alignment (p=0.564). RSA revealed no difference in femoral component migration (p=0.145) between the groups at two years follow-up. There were no differences between patients undergoing the DSA versus PA for THA with respect to postoperative pain scores, functional rehabilitation, patient-reported outcome measurements, accuracy of implant positioning, and implant migration at two years follow-up. Both treatment groups had excellent outcomes that remained comparable at all follow-up intervals


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 44 - 44
1 Feb 2020
Mays R Benson J Muir J White P Meftah M
Full Access

Proper positioning of the acetabular cup deters dislocation after total hip arthroplasty (THA) and is therefore a key focus for orthopedic surgeons. The concept of a safe zone for acetabular component placement was first characterized by Lewinnek et al. and furthered by Callanan et al. The safe zone concept remains widely utilized and accepted in contemporary THA practice; however, components positioned in this safe zone still dislocate. This study sought to characterize current mass trends in cup position identified across a large study sample of THA procedures completed by multiple surgeons. This retrospective, observational study reviewed acetabular cup position in 1,236 patients who underwent THA using computer-assisted navigation (CAS) between July 2015 and November 2017. Outcomes included acetabular cup position (inclination and anteversion) measurements derived from the surgical navigation device and surgical approach. The overall mean cup position of all recorded cases was 21.8° (±7.7°, 95% CI = 6.7°, 36.9°) of anteversion and 40.9° (±6.5°, 95% CI = 28.1°, 53.7°) of inclination (Table 1). For both anteversion and inclination, 65.5% (809/1236) of acetabular cup components were within the Lewinnek safe zone and 58.4% (722/1236) were within the Callanan safe zone. Acetabular cups were placed a mean of 6.8° of anteversion (posterior/lateral approach: 7.0°, anterior approach: 5.6°) higher than the Lewinnek and Callanan safe zones whereas inclination was positioned 0.9° higher than the reported Lewinnek safe zone and 3.4° higher than the Callanan safe zone (Figure 1,2). Our data shows that while the majority of acetabular cups were placed within the traditional safe zones, the mean anteversion orientation is considerably higher than those suggested by the Lewinnek and Callanan safe zones. The implications of this observation warrant further investigation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 539 - 539
1 Sep 2012
Bragdon C Doerner M Callanan M Zurakowski D Kwon Y Rubash H Malchau H
Full Access

Introduction. Acetabular cup positioning has been linked to dislocation and increased bearing surface wear. A previous study found correlations between patient and surgical factors and acetabular component position. The purpose of this study was to determine if acetabular cup positioning improves when surgeons receive feedback on their performance. Methods. Post-op anteroposterior (AP) pelvis and cross-table lateral radiographs were previously obtained for 2061 patients who received a total hip arthroplasty (THA) or hip resurfacing from 2004–2008. The surgeries were performed by 7 surgeons. AP radiographs were measured using Hip Analysis Suite to calculate the cup inclination and version angles. Acceptable ranges were defined for abduction (30–45 °) and version (5–25 °). The same surgeons performed a THA or hip resurfacing on 385 patients from January 2009 through June 2010. Cup inclination and version angles for this set of surgeries were compared to surgeries from 2004–2008 to determine if cup inclination and version angles improved in response to previous acetabular cup positioning studies. Improvement in accuracy was assessed by the chi-square test. Results. Time 1, from 2004 through 2008, had 1952 qualifying hips with 1845 having both version and abduction, and Time 2, from 2009 through June 2010, had 385 qualifying hips, all of which had both version and abduction angles. For Time 1, 1192 (62%) acetabular cups were within the abduction range, 1422 (79%) were within the version range, and 908 (49%) were within the range for both. For Time 2, 276 (72%) acetabular cups were within the abduction range, 250 (65%) were within the version range, and 217 (56%) were within the ranges for both. Accuracy of abduction angle improved (p<0.01) while accuracy of version angle decreased (p<0.01). Accuracy of acetabular cup positioning being within range for both abduction angle and version angle improved significantly (p=0.01), by 7%. Conclusions. Increased awareness and feedback on the resulting abduction and version measurements from THA surgery over time improves the positioning of the acetabular component. A system where objective measurements are presented to the surgeon can significantly improve cup placement which could improve the clinical outcome of THR patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 104 - 104
1 Jun 2012
Dorr L Pagnano M Trousdale R Thompson M Jamieson M Conditt M
Full Access

Introduction. Recent gains in knowledge reveal that the ideal acetabular cup position is in a narrower range than previously appreciated and that position is likely different based on femoral component anteversion. For that reason more accurate acetabular cup positioning techniques will be important for contemporary THA. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion or accelerated wear. Up to 8% of THA patients have cups malaligned in version by more than ±10° outside of the Lewinnek safe zone. This type of malalignment may result in dislocation of the femoral head and instability of the joint within the first year, requiring reoperation. Reported incidences of reoperation are 1-9% depending on surgical skills and technique. In addition, cup malalignment is becoming increasingly important as adoption of hard on hard bearings increases as the success of large head hard on hard bearings seems to be more sensitive to cup positioning. This study reports the accuracy of a haptic robotic system to ream the acetabulum and impact an acetabular cup compared to manual instrumentation. Methods. Six fresh frozen cadaveric acetabula were CT scanned and three-dimensional templating of the center of rotation, anteversion and inclination of the cup was determined pre-operatively. Half of the specimens were prepared with manual instrumentation while half were prepared with robotic guidance. Haptic and visual feedback were provided through robotics and an associated navigation system to guide reaming and impaction of the cup. The robot constrained the orientation and position of the instruments thus constraining the inclination, anteversion and center of rotation of the reamer, trial and the final cup. Post-operative CT's were used to determine the achieved cup placement and compared to the pre-operative plans. Results. In all cases, robotic guidance resulted in placement of the acetabular cup within ±3° of anteversion, ±3° of relative to the pre-op plan. The average absolute inclination error was 1.5±1.2° and the average absolute anteversion error 1.3±1.4°. Cup placement with robotic assistance was significantly more accurate and precise than with manual instrumentation. With manual instrumentation the errors were, on average, 4.2 times higher in inclination and 4.8 times higher in anteversion compared to robotic instrumentation. Conclusion. This haptic robotic system substantially improved the accuracy of acetabular reaming and placement of the final cup compared to traditional manual techniques. With greater knowledge of ideal acetabular cup position, highly accurate techniques may allow surgeons to decrease the risk of dislocation, promote durability and improve the ability to restore appropriate leg length and offset. Haptic robotics has proven to be safe and effective in both knee and hip surgery and provides the potential to redefine the “instrument set” used for orthopedic procedures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 97 - 97
1 Feb 2017
DelSole E Vigdorchik J Schwarzkopf R Buckland A
Full Access

Background. Spinal deformity has a known deleterious effect upon the outcomes of total hip arthroplasty and acetabular component positioning. This study sought to evaluate the relationship between severity of spinal deformity parameters and acetabular cup position, rate of dislocation, and rate of revision among patients with total hip arthroplasties and concomitant spinal deformity. Methods. A prospectively collected database of patients with spinal deformity was reviewed and patients with total hip arthroplasty were identified. The full body standing stereoradiographic images (EOS) were reviewed for each patient. From these images, spinal deformity parameters and acetabular cup anteversion and inclination were measured. A chart review was performed on all patients to determine dislocation and revision arthroplasty events. Statistical analysis was performed to determine correlation of deformity with acetabular cup position. Subgroup analysis was performed for patients with spinal fusion, dislocation events, and revision THA. Results. One-hundred and seven spinal deformity patients were identified, with 139 hips for analysis. The rate of THA dislocation in this cohort was 8.0%, with a revision rate of 5.8% for instability. Patients who sustained dislocations had significantly higher spinopelvic tilt, T1-pelvic angle, and mismatch of lumbar lordosis and pelvic incidence. Among all patients, only 68.8% met the radiographic “safe zone” for anteversion in the standing position (Figure 1). A comparison of radiographic cup position on supine x-ray with standing EOS imaging demonstrated an increase in anteversion of 6.2 degrees. Standing decreased rate of safe zone anteversion of the cup by 20%. Conclusions. In this cohort, patients with THA and concomitant spinal deformity have a particularly high rate of dislocation. This dislocation risk may be driven by the degree of spinal deformity and by spinopelvic compensation, which is suggested by our findings. Arthroplasty surgeons should be aware of the elevated dislocation rate and consider a surgical strategy for maintaining hip stability in this population


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 43 - 43
1 Sep 2014
Ashour R Maritz M Goga I
Full Access

Purpose of the study. We reviewed one hundred and twenty patients who had primary total hip replacement using Corail/Pinnacle Metal on metal bearing surfaces between 2006 and 2009. We were interested in the metal ion levels of the whole cohort, the incidence of unexplained pain, pseudo tumour lesions (ALVAL) and early loosening and failure. We were particularly interested in the relationship of the acetabular cup position in relation to the pelvis and lumbar spine. Material and methods. We reviewed 120 charts and 104 patients in total. All patients had metal ion assays (cobalt and chromium). All patients had standardised radiographic evaluation using a special technique to assess acetabular cup position and the relationship to the pelvis and lumbar spine. Results. Ten patients had mild hip pain. This was not considered to be pathological pain related to the MOM articulation. None of the patients had any generalised symptoms of metal allergy as reported in the literature. We detected one patient with soft tissue fluid collections suggestive of an ALVAL lesion on ultrasound. The average cup inclination was 48 degrees with a range from 34 to 53 degrees. Conclusion. Our experience at 5 years with the Corail/Pinnacle Metal on Metal articulation has been acceptable. NO DISCLOSURES