Advertisement for orthosearch.org.uk
Results 1 - 20 of 2384
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components. Results. In Round 1, the study revealed widespread variability in stakeholder opinions on diagnostic components of STKIs. Round 2 identified patterns in the perceived importance of specific items within each diagnostic component. Round 3 produced rankings of perceived item importance within each diagnostic component. Noteworthy findings include the challenges associated with accurate and readily available diagnostic methods in acute care settings, the consistent acknowledgment of the importance of adopting a patient-centred approach to diagnosis, and the transition from divergent to convergent opinions between Rounds 2 and 3. Conclusion. This study highlights the potential for a paradigm shift in acute STKI diagnosis, where variability in the understanding of STKI diagnostic components may be addressed by establishing a uniform, evidence-based framework for evaluating these injuries. Cite this article: Bone Jt Open 2024;5(11):984–991


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 71 - 71
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 8 - 8
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 43 - 43
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 227 - 229
1 Mar 2023
Theologis T Brady MA Hartshorn S Faust SN Offiah AC

Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools. Cite this article: Bone Joint J 2023;105-B(3):227–229


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 4 - 4
7 Nov 2023
Tshisikule R
Full Access

Our study sought to establish the necessity of prolonged pre-operative antibiotic prophylaxis in patients presenting with zone II and zone V acute flexor tendon injuries (FTI). We hypothesized that a single dose of prophylactic antibiotic was adequate in prevention of post-operative wound infection in acute zone II and V FTI. This was a prospective study of 116 patients who presented with zone II and zone V acute FTI. The study included patients who were 18 years and older. Those with macroscopic contamination, immunocompromised, open fractures, bite injuries, and crush injuries were excluded. Patients were randomised into a group receiving a single dose of prophylactic antibiotic and another group receiving a continuous 8 hourly antibiotic doses until the day of surgery. Each group was subdivided into occupational and non-occupational injuries. Their post-operative wound outcomes were documented 10 – 14 days after surgery. The wound outcome was reported as no infection, superficial infection (treated with wound dressings), and deep infection (requiring surgical debridement). There was 0.9% rate of deep post-operative wound infections, which was a single zone V acute FTI case in a single dose prophylactic antibiotic group. There was a 7.8% superficial post-operative wound infection rate, which was mainly zone II acute FTI in both antibiotic groups. There was a strong association between zone II acute FTI and post-operative wound infection (p < 0.05). There was no association between (antibiotic dosage or place of injury) with post-operative wound infection (p > 0.05). There is no benefit in prescribing prolonged pre-operative antibiotic in patients with acute, simple lacerations to zone II and zone V FTI if there is no macroscopic wound contamination


Bone & Joint Open
Vol. 5, Issue 8 | Pages 708 - 714
22 Aug 2024
Mikhail M Riley N Rodrigues J Carr E Horton R Beale N Beard DJ Dean BJF

Aims. Complete ruptures of the ulnar collateral ligament (UCL) of the thumb are a common injury, yet little is known about their current management in the UK. The objective of this study was to assess the way complete UCL ruptures are managed in the UK. Methods. We carried out a multicentre, survey-based cross-sectional study in 37 UK centres over a 16-month period from June 2022 to September 2023. The survey results were analyzed descriptively. Results. A total of 37 centres participated, of which nine were tertiary referral hand centres and 28 were district general hospitals. There was a total of 112 respondents (69 surgeons and 43 hand therapists). The strongest influence on the decision to offer surgery was the lack of a firm ‘endpoint’ to stressing the metacarpophalangeal joint (MCPJ) in either full extension or with the MCPJ in 30° of flexion. There was variability in whether additional imaging was used in managing acute UCL injuries, with 46% routinely using additional imaging while 54% did not. The use of a bone anchor was by far the most common surgical option for reconstructing an acute ligament avulsion (97%, n = 67) with a transosseous suture used by 3% (n = 2). The most common duration of immobilization for those managed conservatively was six weeks (58%, n = 65) and four weeks (30%, n = 34). Most surgeons (87%, n = 60) and hand therapists (95%, n = 41) would consider randomizing patients with complete UCL ruptures in a future clinical trial. Conclusion. The management of complete UCL ruptures in the UK is highly variable in certain areas, and there is a willingness for clinical trials on this subject. Cite this article: Bone Jt Open 2024;5(8):708–714


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 400 - 411
15 Mar 2023
Hosman AJF Barbagallo G van Middendorp JJ

Aims. The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI). Methods. Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months. Results. The final analyses comprised 159 patients in the early and 135 in the late group. Patients in the early group had significantly more severe neurological impairment before surgical treatment. For unadjusted complete-case analysis, mean change in LEMS was 15.6 (95% confidence interval (CI) 12.1 to 19.0) in the early and 11.3 (95% CI 8.3 to 14.3) in the late group, with a mean between-group difference of 4.3 (95% CI -0.3 to 8.8). Using multiply imputed data adjusting for baseline LEMS, baseline ASIA Impairment Scale (AIS), and propensity score, the mean between-group difference in the change in LEMS decreased to 2.2 (95% CI -1.5 to 5.9). Conclusion. Compared to late surgical decompression, early surgical decompression following acute tSCI did not result in statistically significant or clinically meaningful neurological improvements 12 months after injury. These results, however, do not impact the well-established need for acute, non-surgical tSCI management. This is the first study to highlight that a combination of baseline imbalances, ceiling effects, and loss to follow-up rates may yield an overestimate of the effect of early surgical decompression in unadjusted analyses, which underpins the importance of adjusted statistical analyses in acute tSCI research. Cite this article: Bone Joint J 2023;105-B(4):400–411


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 18 - 18
17 Nov 2023
Gallagher H Naeem H Wood N Daou HN Pereira MG Giannoudis PV Roberts LD Howard A Bowen TS
Full Access

Abstract. Introduction. Skeletal muscle wasting is an important clinical issue following acute traumatic injury, and can delay recovery and cause permanent functional disability particularly in the elderly. However, the fundamental mechanisms involved in trauma-induced muscle wasting remain poorly defined and therapeutic interventions are limited. Objectives. To characterise local and systemic mediators of skeletal muscle wasting in elderly patients following acute trauma. Methods. Experiments were approved by a local NHS Research Ethics Committee and all participants provided written informed consent. Vastus lateralis biopsies and serum samples were taken from human male and female patients shortly after acute trauma injury in lower limbs (n=6; mean age 78.7±4.4 y) and compared to age-matched controls (n=6; mean age 72.6±6.3 y). Atrogenes and upstream regulators (MuRF1; MAFbx; IL6, TNFα, PGC-1α) mRNA expression was assessed in muscle samples via RT-qPCR. Serum profiling of inflammatory markers (e.g. IL6, TNFα, IL1β) was further performed via multiplex assays. To determine whether systemic factors induced by trauma directly affect muscle phenotype, differentiated primary human myotubes were treated in vitro with serum from controls or trauma patients (pooled; n=3 each) in the final 24 hours of differentiation. Cells were then fixed, stained for myogenin and imaged to determine minimum ferret diameter. Statistical significance was determined at P<0.05. Results. There was an increase in skeletal muscle mRNA expression for E3 ligase MAFbx and inflammatory cytokine IL-6 (4.6 and 21.5-fold respectively; P<0.05) in trauma patients compared to controls. Expression of myogenic determination factor MyoD and regulator of mitochondrial biogenesis PGC-1α was lower in muscle of trauma patients vs controls (0.5 and 0.39-fold respectively; P<0.05). In serum, trauma patients showed increased concentrations of circulating pro-inflammatory cytokines IL-6 (14.5 vs. 0.3 pg/ml; P<0.05) and IL-16 (182.7 vs. 85.2 pg/ml; P<0.05) compared to controls. Primary myotube experiments revealed serum from trauma patients induced atrophy (32% decrease in diameter) compared to control serum-treated cells (P<0.001). Conclusion. Skeletal muscle from patients following acute trauma injury showed greater expression of atrophy and inflammatory markers. Trauma patient serum exhibited higher circulating pro-inflammatory cytokine concentrations. Primary human myotubes treated with serum from trauma patients showed significant atrophy compared to healthy serum-treated controls. We speculate a mechanism(s) acting via circulating factors may contribute to skeletal muscle pathology following acute trauma. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 11 - 11
23 Apr 2024
Lineham B Faraj A Hammet F Barron E Hadland Y Moulder E Muir R Sharma H
Full Access

Introduction. Intra articular distal tibia fractures can lead to post-traumatic osteoarthritis. Joint distraction has shown promise in elective cases. However, its application in acute fractures remains unexplored. This pilot study aims to fill this knowledge gap by investigating the benefits of joint distraction in acute fractures. Materials & Methods. We undertook a restrospective cohort study comprising patients with intra-articular distal tibia and pilon fractures treated with a circular ring fixator (CRF) at a single center. Prospective data collection included radiological assessments, Patient-Reported Outcome Measures (PROM), necessity for additional procedures, and Kellgren and Lawrence grade (KL) for osteoarthritis (OA). 137 patients were included in the study, 30 in the distraction group and 107 in the non-distraction group. There was no significant difference between the groups. Results. Mean follow-up was 3.73 years. There was no significant difference between the groups in overall complications or need for further procedures. There was no significant difference in progression of KL between the groups (1.81 vs 2.0, p=0.38) mean follow up 1.90 years. PROM data was available for 44 patients (6 distraction, 38 non-distraction) with a mean follow-up of 1.71 years. There was no significant difference in EQ5D (p=0.32) and C Olerud-H Molander scores (p=0.17). Conclusions. This pilot study suggests that joint distraction is safe in the acute setting. However, the study's impact is constrained by a relatively small patient cohort and a short-term follow-up period. Future investigations should prioritise longer-term follow-ups and involve a larger patient population to more comprehensively evaluate the potential benefits of joint distraction in acute fractures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 12 - 12
1 Dec 2022
Shadgan B Kwon B
Full Access

Despite advances in treating acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Augmentation of mean arterial blood pressure (MAP) to promote blood flow and oxygen delivery to the injured cord is one of the only currently available treatment options to potentially improve neurological outcomes after acute spinal cord injury (SCI). However, to optimize such hemodynamic management, clinicians require a method to measure and monitor the physiological effects of these MAP alterations within the injured cord in real-time. To address this unmet clinical need, we developed a series of miniaturized optical sensors and a monitoring system based on multi-wavelength near-infrared spectroscopy (MW-NIRS) technique for direct transdural measurement and continuous monitoring of spinal cord hemodynamics and oxygenation in real-time. We conducted a feasibility study in a porcine model of acute SCI. We also completed two separate animal studies to examine the function of the sensor and validity of collected data in an acute experiment and a seven-day post-injury survival experiment. In our first animal experiment, nine Yorkshire pigs underwent a weight-drop T10 vertebral level contusion-compression injury and received episodes of ventilatory hypoxia and alterations in MAP. Spinal cord hemodynamics and oxygenation were monitored throughout by a transdural NIRS sensor prototype, as well as an invasive intraparenchymal (IP) sensor as a comparison. In a second experiment, we studied six Yucatan miniature pigs that underwent a T10 injury. Spinal cord oxygenation and hemodynamics parameters were continuously monitored by an improved NIRS sensor over a long period. Episodes of MAP alteration and hypoxia were performed acutely after injury and at two- and seven-days post-injury to simulate the types of hemodynamic changes patients experience after an acute SCI. All NIRS data were collected in real-time, recorded and analyzed in comparison with IP measures. Noninvasive NIRS parameters of tissue oxygenation were highly correlated with invasive IP measures of tissue oxygenation in both studies. In particular, during periods of hypoxia and MAP alterations, changes of NIRS-derived spinal cord tissue oxygenation percentage were significant and corresponded well with the changes in spinal cord oxygen partial pressures measured by the IP sensors (p < 0.05). Our studies indicate that a novel optical biosensor developed by our team can monitor real-time changes in spinal cord hemodynamics and oxygenation over the first seven days post-injury and can detect local tissue changes that are reflective of systemic hemodynamic changes. Our implantable spinal cord NIRS sensor is intended to help clinicians by providing real-time information about the effects of hemodynamic management on the injured spinal cord. Hence, our novel NIRS system has the near-term potential to impact clinical care and improve neurologic outcomes in acute SCI. To translate our studies from bench to bedside, we have developed an advanced clinical NIRS sensor that is ready to be implanted in the first cohort of acute SCI patients in 2022


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_10 | Pages 3 - 3
23 May 2024
Patel A Sivaprakasam M Reichert I Ahluwalia R Kavarthapu V
Full Access

Introduction. Charcot neuroarthropathy (CN) of foot and ankle presents significant challenges to the orthopaedic foot and ankle surgeon. Current treatment focuses on conservative management during the acute CN phase with offloading followed by deformity correction during the chronic phase. However, the deformity can progress in some feet despite optimal offloading resulting ulceration, infection, and limb loss. Our aim was to assess outcomes of primary surgical management with early reconstruction. Methods. Between December 2011 and December 2019, 25 patients underwent operative intervention at our specialist diabetic foot unit for CN with progressive deformity and or instability despite advanced offloading. All had peripheral neuropathy, and the majority due to diabetes. Twenty-six feet were operated on in total - 14 during Eichenholtz stage 1 and 12 during stage 2. Fourteen of these were performed as single stage procedures, whereas 12 as two-stage reconstructions. These included isolated hindfoot reconstructions in seven, midfoot in four and combined in 14 feet. Mean age at the time of operation was 54. Preoperative ulceration was evident in 14 patients. Results. Mean follow up was 45 months (Range 12–98). There was 100% limb salvage. One-year ambulation outcomes demonstrate FWB in bespoke footwear for 17 patients and in an ankle foot orthosis (AFO), Charcot restraint orthopaedic walker (CROW) or bivalve cast for seven. All preoperative ulceration had healed. Union was achieved in 18/21 hindfoot reconstructions and 7/18 midfoot reconstructions. There were nine episodes of return to theatre, of which five were within the first 12 months. There was one episode of new ulceration. Conclusion. Surgical management of acute CN (Eichenholtz one and two) of the foot provides functional limb salvage. In particular, hindfoot reconstruction shows good rates of bony union. It should be considered in ‘foot at risk’ presentations of acute CN foot


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 58 - 58
10 Feb 2023
Ramage D Burgess A Powell A Tangrood Z
Full Access

Ankle fractures represent the third most common fragility fracture seen in elderly patients following hip and distal radius fractures. Non-operative management of these see complication rates as high as 70%. Open reduction and internal fixation (ORIF) has complication rates of up to 40%. With either option, patients tend to be managed with a non-weight bearing period of six weeks or longer. An alternative is the use of a tibiotalocalcaneal (TTC) nail. This provides a percutaneous treatment that enables the patient to mobilise immediately. This case-series explores the efficacy of this device in a broad population, including the highly comorbid and cognitively impaired. We reviewed patients treated with TTC nail for acute ankle fractures between 2019 and 2022. Baseline and surgical data were collected. Clinical records were reviewed to record any post-operative complication, and post-operative mobility status and domicile. 24 patients had their ankle fracture managed with TTC nailing. No intra-operative complications were noted. There were six (27%) post-operative complications; four patients had loosening of a distal locking screw, one significant wound infection necessitating exchange of nail, and one pressure area from an underlying displaced fracture fragment. All except three patients returned to their previous domicile. Just over two thirds of patients returned to their baseline level of mobility. This case-series is one of the largest and is also one of the first to include cognitively impaired patients. Our results are consistent with other case-series with a favourable complication rate when compared with ORIF in similar patient groups. The use of a TTC nail in the context of acute, geriatric ankle trauma is a simple and effective treatment modality. This series shows acceptable complication rates and the majority of patients are able to return to their baseline level of mobility and domicile


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients. Methods. We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3). Results. In total there were 13 grade 1 injuries, 11 grade 2 injuries, and 56 grade 3 injuries in the 80 consecutive patients. The inter-observer reliability of the OxSMART was substantial (Kappa = 0.711). The inter-observer reliability of detecting an obvious fracture was moderate for radiographs (Kappa = 0.436) and MRI (Kappa = 0.543). Only 52% (29 of 56) of the grade 3 injuries were detected on plain radiographs. There were two complications of delayed union, both of which occurred in patients with grade 3 injuries, who were promptly treated with cast immobilization. There were no complications in the patients with grade 1 and 2 injuries and the majority of these patients were treated with early mobilization as pain allowed. Conclusion. This MRI based classification tool, the OxSMART, is reliable and clinically useful in managing patients with acute scaphoid injuries. Cite this article: Bone Jt Open 2022;3(11):913–920


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 14 - 14
10 Jun 2024
Nogdallah S Fatooh M Khairy A Mohamed H Abdulrahman A Mohamed H
Full Access

Background. Neglected clubfoot in this series is defined as untreated equino-cavo-adducto-varus in older children, or adults. Relapsed clubfoot is the residual deformity that remains after single or multiple surgical interventions. Severe neglected clubfoot rarely exists today in developed countries, except in some emigrants from low- and middle-income countries. Acute surgical management with corrective mid-foot osteotomy and elongation of the Achilles tendon has excellent functional outcome. Objective. To assess the functional outcome of acute correction of neglected Talipes-quino-varus deformity in adults. Methods. This is cross sectional, hospital–based study that took place in Khartoum, Sudan. Forty patients were included in this study. Midfoot osteotomy and elongation of the Achilles tendon were performed to all patients. Data was collected using a questionnaire and the functional outcome has been assessed using the American Orthopaedic Foot and Ankle Society Score (AOFAS). This score was measured before surgery and one years after surgery. Results. The mean age was 19.9±4.7 years. Males were 25 (62.5%) and females were 15 (37.5%). The mean preoperative AOFAS score was 37.7±7.1 (poor). This score improved to 80.7±13.7 (good to excellent), two years after surgery. However, this indicates significant change in the functional outcome after the operation (P value < 0.05). Excellent post-operative functional outcome was found among patients aged 18 – 23 years 18 (50%) P. value: 0.021. The majority of patients 36(90%) were fully satisfied with the operation, 2(5%) partially satisfied and 2(5%) were unsatisfied. Conclusion. Acute correction of neglected and relapsed TEV with elongation of the Achilles tendon and single midfoot osteotomy has excellent functional outcome as assessed by AOFAS Score. The satisfaction with this procedure is impressive. The younger age population showed better outcomes with this procedure


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 31 - 31
10 Feb 2023
Minasian B Hope N
Full Access

Surfing has rapidly grown in popularity as the sport made its debut at the Tokyo 2020 Olympic Games. Surfing injuries are becoming more relevant with the globalisation and increasing risks of the sport, but despite this, little is known about surfing injuries or prevention strategies in either the competitive or recreational surfer. We reviewed the literature for the incidence, anatomical distribution, type and underlying mechanism of acute and overuse injuries, and discuss current preventative measures. Four online databases, including MEDLINE, PubMed, EMBASE and Cochrane Library were searched from inception to March 2020. This review finds that skin injuries represent the highest proportion of total injuries. Acute injuries most frequently affect the head, neck and face, followed by the lower limbs. Being struck by one's own board is the most common mechanism of injury. Surfers are injured at a frequency of 0.30–6.60 injuries per 1000 hours of surfing. Most prior studies are limited by small sample sizes, poor data collection methodology and geographical constraints. The scientific literature on surfing injuries under-represents overuse musculoskeletal injuries and the efficacy of prevention strategies for surfing-related overuse musculoskeletal injuries has not been studied. Injuries to the head and neck pose greater risks to a surfer's morbidity and mortality, yet there is no consensus on the management protocol of spinal injuries that occur in open water. Non-contact acute ligament injuries have increased as surfing manoeuvres have become more acrobatic, and overuse musculoskeletal injuries are highly correlated with paddling. Further research is needed to establish preventative measures for both acute and overuse surfing injuries and to ensure the increasing popularity of surfing is met with an improved understanding of sport risks and safety. Specifically, we recommend research be prioritised regarding the efficacy of training programmes to prevent surfing-related overuse musculoskeletal injuries


Bone & Joint Open
Vol. 4, Issue 5 | Pages 329 - 337
8 May 2023
Khan AQ Chowdhry M Sherwani MKA McPherson EJ

Aims

Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs).

Methods

In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 115 - 115
14 Nov 2024
Zargarbashi R Vosoughi F Shaker F Mirbeyk M Seifi M Vafaee AR
Full Access

Introduction. The management of pathologic fractures (PF) following osteomyelitis (especially acute subtype) has not been widely investigated. This is challenging due to the infection-induced destructive process causing bone architecture defects. Therefore, this study aims to assess a stepwise treatment plan for the acute incidence of PF in long bone following pediatric acute Hematogenous osteomyelitis(AHO) (the most common mechanism in children). Method. This case series was conducted in a tertiary pediatric center. Patients with fracture incidence within the first 10 days after AHO diagnosis were included. Patients’ characteristics were retrospectively reviewed. Result. Nine patients (7 boys, involved bone: the femur(4), tibia(3), Radius(1), and Ulna(1)) were included, with a mean age of 52.56±66.18 months (7-216) and a follow-up time of 11.62±3.61 years (6.5-16 years). The etiology in all patients was hematological(Methicillin-resistant Staphylococcus aureus). Our stepwise treatment plan was as follows:. 1. Intravenous antibiotics until ESR<20, then oral to ESR<5. 2. Debridemnt surgery was performed if abscesses were detected. 3. Fracture type determined initial fixation: external fixation (4 patients, 2 unions) or casting (2 patients, both unions). 4. If the union was not obtained, internal fixation (with (2 patients) or without (2 patients) bone graft) was applied (all obtained union). 5. Circular external fixation was applied if the union was not obtained or leg length discrepancy occurred (1 case). A mean of 3.2 surgical procedures (1-6) was required to control the infection, and 1.4 surgical procedures (0-4) were required to obtain union. Except for one patient who died of septic shock, all other patients (88.8%) reached complete recovery (average length of hospital stay of 19.2 days (5-35).), and the union was obtained (the average union time of 17.25 months(4-36)) without long-term sequelae of osteomyelitis. Conclusion. The outcome of the stepwise plan in this study suggests that acute PF following AHO in pediatrics can be managed efficiently


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 46 - 46
1 Nov 2022
Maher N Shinmar H Anand S
Full Access

Abstract. Introduction. A spotlight has been placed upon virtual assessment of patients during the coronavirus pandemic. This has been particularly prevalent in the assessment of acute knee injuries. In this study we aim to assess the accuracy of telephone triage, confirmed by Magnetic Resonance Imaging (MRI) in the diagnosis of acute knee injuries. Methods. Case records of patients triaged by telephone in the acute knee clinic at Leeds General Infirmary were analysed. Provisional diagnoses made following telephone triage were compared to radiological diagnoses made on subsequent MRI scans. Diagnostic accuracy was compared between those patients assessed virtually and those assessed in face-to-face clinics. Results. 1160 patients were referred to the acute knee injury clinic during the study period. 587 of these were triaged telephonically. MRI scans were requested for 107 (18%) virtually reviewed patients. Of these patients, 92 (79%) had an MRI scan requested after making a provisional diagnosis over the phone. Of the MRI requests made after virtual consultation, there was a 75% diagnostic accuracy of the pre-imaging diagnosis. Of the patients seen in face-to-face appointments, a diagnostic accuracy of 73% was observed. Conclusion. Virtual assessment can provide an efficient and cost-effective establishment of diagnosis of acute knee injuries whilst reducing hospital attendance. A combination of virtual and in-person clinics may allow quicker access to specialist opinion and therefore reduce patient waiting times


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 19 - 19
1 Oct 2022
Schenk HM Sebillotte M Lomas J Taylor A Benavent E Murillo O Fernandez-Sampedro M Huotari K Aboltins C Trebse R Soriano A Wouthuyzen-Bakker M
Full Access

Aim. Patients with late acute periprosthetic joint infections (PJI) and treated with surgical debridement have a high failure rate. Previous studies have shown that rheumatoid arthritis (RA) is an independent risk factor for treatment failure. We conducted a case-control study to identify predictors for failure in late acute PJI treatment in RA patients. We hypothesize that patients with RA have a higher failure rate compared to controls due to the use of immunosuppressive drugs. Method. Data of an international multicenter retrospective observational study was used. Late acute PJI was defined as a sudden onset of symptoms and signs of a PJI, more than 3 months after implantation. Failure of treatment was defined as persistent signs of infection, relapse with the same or reinfection with a different micro-organism, need for prosthesis removal or death. Cases with RA were matched with cases without RA based on the affected joint. A Cox survival analyses, stratified for RA, was used to calculate hazard ratio's (HR) for failure. Subgroup analyses were used to explore other predictors for treatment failure in RA patients. Results. A total of 40 patients with RA and 80 controls without RA were included. Treatment failure occurred in 65% patients with RA compared to 45% for controls (p= .052). 68% of patients with RA used immunosuppressive drugs at time of PJI diagnosis. The use or continuation of immunosuppressive drugs in PJI was not associated with a higher failure rate; neither were the duration of symptoms and causative microorganism. The time between implantation of the prosthetic joint and diagnosis of infection was longer in RA patients: median 110 (IQR 41-171) vs 29 months (IQR 7.5–101.25). Exchange of mobile components was associated with a lower risk of treatment failure (HR 0.489, 95% CI 0.242–0.989, p-value .047). Conclusions. The use of immunosuppressive drugs does not seem to be associated with a higher failure rate in patients with RA. Mobile exchange in RA patients is associated with a lower risk of failure. This might be due to the significantly older age of the prosthesis in RA patients. Future studies are needed to explore these associations and its underlying pathogenesis