Advertisement for orthosearch.org.uk
Results 1 - 20 of 5927
Results per page:
Bone & Joint Open
Vol. 1, Issue 9 | Pages 594 - 604
24 Sep 2020
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To develop a core outcome set of measurements from postoperative radiographs that can be used to assess technical skill in performing dynamic hip screw (DHS) and hemiarthroplasty, and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. A Delphi exercise was undertaken at a regional major trauma centre to identify candidate measurement items. The feasibility of taking these measurements was tested by two of the authors (HKJ, GTRP). Validity and reliability were examined using the radiographs of operations performed by orthopaedic resident participants (n = 28) of a multicentre randomized controlled educational trial (ISRCTN20431944). Trainees were divided into novice and intermediate groups, defined as having performed < ten or ≥ ten cases each for DHS and hemiarthroplasty at baseline. The procedure-based assessment (PBA) global rating score was assumed as the gold standard assessment for the purposes of concurrent validity. Intra- and inter-rater reliability testing were performed on a random subset of 25 cases. Results. In total, 327 DHS and 248 hemiarthroplasty procedures were performed by 28 postgraduate year (PGY) 3 to 5 orthopaedic trainees during the 2014 to 2015 surgical training year at nine NHS hospitals in the West Midlands, UK. Overall, 109 PBAs were completed for DHS and 80 for hemiarthroplasty. Expert consensus identified four ‘final product analysis’ (FPA) radiological parameters of technical success for DHS: tip-apex distance (TAD); lag screw position in the femoral head; flushness of the plate against the lateral femoral cortex; and eight-cortex hold of the plate screws. Three parameters were identified for hemiarthroplasty: leg length discrepancy; femoral stem alignment; and femoral offset. Face validity, content validity, and feasibility were excellent. For all measurements, performance was better in the intermediate compared with the novice group, and this was statistically significant for TAD (p < 0.001) and femoral stem alignment (p = 0.023). Concurrent validity was poor when measured against global PBA score. This may be explained by the fact that they are measuring difference facets of competence. Intra-and inter-rater reliability were excellent for TAD, moderate for lag screw position (DHS), and moderate for leg length discrepancy (hemiarthroplasty). Use of a large multicentre dataset suggests good generalizability of the results to other settings. Assessment using FPA was time- and cost-effective compared with PBA. Conclusion. Final product analysis using post-implantation radiographs to measure technical skill in hip fracture surgery is feasible, valid, reliable, and cost-effective. It can complement traditional workplace-based assessment for measuring performance in the real-world operating room . It may have particular utility in competency-based training frameworks and for assessing skill transfer from the simulated to live operating theatre. Cite this article: Bone Joint Open 2020;1-9:594–604


Bone & Joint Open
Vol. 3, Issue 6 | Pages 502 - 509
20 Jun 2022
James HK Griffin J Pattison GTR

Aims. To identify a core outcome set of postoperative radiographic measurements to assess technical skill in ankle fracture open reduction internal fixation (ORIF), and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. An e-Delphi exercise was undertaken at a major trauma centre (n = 39) to identify relevant parameters. Feasibility was tested by two authors. Reliability and validity was tested using postoperative radiographs of ankle fracture operations performed by trainees enrolled in an educational trial (IRCTN 20431944). To determine construct validity, trainees were divided into novice (performed < ten cases at baseline) and intermediate groups (performed ≥ ten cases at baseline). To assess concurrent validity, the procedure-based assessment (PBA) was considered the gold standard. The inter-rater and intrarater reliability was tested using a randomly selected subset of 25 cases. Results. Overall, 235 ankle ORIFs were performed by 24 postgraduate year three to five trainees during ten months at nine NHS hospitals in England, UK. Overall, 42 PBAs were completed. The e-Delphi panel identified five ‘final product analysis’ parameters and defined acceptability thresholds: medial clear space (MCS); medial malleolar displacement (MMD); lateral malleolar displacement (LMD); tibiofibular clear space (TFCS) (all in mm); and talocrural angle (TCA) in degrees. Face validity, content validity, and feasibility were excellent. PBA global rating scale scores in this population showed excellent construct validity as continuous (p < 0.001) and categorical (p = 0.001) variables. Concurrent validity of all metrics was poor against PBA score. Intrarater reliability was substantial for all parameters (intraclass correlation coefficient (ICC) > 0.8), and inter-rater reliability was substantial for LMD, MMD, TCA, and moderate (ICC 0.61 to 0.80) for MCS and TFCS. Assessment was time efficient compared to PBA. Conclusion. Assessment of technical skill in ankle fracture surgery using the first postoperative radiograph satisfies the tested Van der Vleuten’s utility criteria for effective assessment. 'Final product analysis' assessment may be useful to assess skill transfer in the simulation-based research setting. Cite this article: Bone Jt Open 2022;3(6):502–509


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_5 | Pages 4 - 4
13 Mar 2023
Burt J AlKandari N Campbell D Maclean J
Full Access

The UK falls behind other European countries in the early detection of Developmental Dysplasia of the hip (DDH) and there remains controversy surrounding screening strategies for early detection. Clinical detection of DDH is challenging and recognised to be dependent on examiner experience. No studies exist assessing the number of personnel currently involved in such assessments. Our objective was to study the current screening procedure by studying a cohort of new-born babies in one teaching hospital and assess the number of health professionals involved in neonatal hip assessment and the number of examinations undertaken during one period by each individual. This was a retrospective observational study assessing all babies born consecutively over a 14-week period in 2020. Record of each initial baby check was obtained from Maternity or Neonatal Badger. Follow-up data on ultrasound or orthopaedic outpatient referrals were obtained from clinical records. 1037 babies were examined by 65 individual examiners representing 9 different healthcare professional groups. The range of examinations conducted per examiner was 1- 97 with a mean of 15.9 examinations per person. 49% individuals examined 5 or less babies across the 14 weeks, with 18% only performing 1 examination. Of the 5 babies (0.48%) treated for DDH, one was picked up on neonatal assessment. In a system where so many examiners are involved in neonatal hip assessment the experience is limited for most examiners. It is unsurprising that high current rates of late presentation of DDH are observed locally, which are in accordance with published national experience


Bone & Joint Open
Vol. 5, Issue 6 | Pages 524 - 531
24 Jun 2024
Woldeyesus TA Gjertsen J Dalen I Meling T Behzadi M Harboe K Djuv A

Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual assessments of the fractures based on these. The assessment was conducted according to a systematic protocol including three classification systems (AO/Orthopaedic Trauma Association (OTA), Evans Jensen (EVJ), and Nakano) and questions addressing specific fracture patterns. An expert group provided a gold-standard assessment based on the CT images. Sensitivities and specificities of surgeons’ assessments were estimated and compared in regression models with correlations for the same patients. Intra- and inter-rater reliability were presented as Cohen’s kappa and Gwet’s agreement coefficient (AC1). Results. We included 120 fractures in 119 patients. Compared to radiographs, CT increased the sensitivity of detecting unstable trochanteric fractures from 63% to 70% (p = 0.028) and from 70% to 76% (p = 0.004) using AO/OTA and EVJ, respectively. Compared to radiographs alone, CT increased the sensitivity of detecting a large posterolateral trochanter major fragment or a comminuted trochanter major fragment from 63% to 76% (p = 0.002) and from 38% to 55% (p < 0.001), respectively. CT improved intra-rater reliability for stability assessment using EVJ (AC1 0.68 to 0.78; p = 0.049) and for detecting a large posterolateral trochanter major fragment (AC1 0.42 to 0.57; p = 0.031). Conclusion. A preoperative CT of trochanteric fractures increased detection of unstable fractures using the AO/OTA and EVJ classification systems. Compared to radiographs, CT improved intra-rater reliability when assessing fracture stability and detecting large posterolateral trochanter major fragments. Cite this article: Bone Jt Open 2024;5(6):524–531


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 112 - 112
11 Apr 2023
Oliver W Nicholson J Bell K Carter T White T Clement N Duckworth A Simpson H
Full Access

The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic callus formation (Radiographic Union Score for HUmeral fractures <8), one had SBC on 6wk ultrasound (and united) and the other two had non-bridging or absent sonographic callus (both developed a nonunion). Ultrasound assessment of humeral shaft fracture healing was reliable and predictive of nonunion, and may be a useful tool in defining the risk of nonunion among patients with reduced radiographic callus formation


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims. Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. Methods. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp). Results. NIRS scans on both the inner (trabecular) surface or outer (cortical) surface accurately identified variations in bone collagen, water, mineral, and fat content, which then accurately predicted bone volume fraction (BV/TV, inner R. 2. = 0.91, outer R. 2. = 0.83), thickness (Tb.Th, inner R. 2. = 0.9, outer R. 2. = 0.79), and cortical thickness (Ct.Th, inner and outer both R. 2. = 0.90). NIRS scans also had 100% classification accuracy in grading the quartile of bone thickness and quality. Conclusion. We believe this is a fundamental step forward in creating an instrument capable of intraoperative real-time use. Cite this article: Bone Jt Open 2023;4(4):250–261


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 28 - 28
11 Apr 2023
Wither C Lawton J Clarke D Holmes E Gale L
Full Access

Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality. Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment. The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65. The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach


Bone & Joint Open
Vol. 5, Issue 9 | Pages 742 - 748
10 Sep 2024
Kodumuri P Joshi P Malek I

Aims. This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Methods. Using a life-cycle assessment approach, we conducted a prospective study on ten cemented and ten hybrid THA cases, evaluating carbon emissions from anaesthetic room to recovery. Scope 1 and scope 2 emissions were considered, focusing on direct emissions and energy consumption. Data included detailed assessments of consumables, waste generation, and energy use during surgeries. Results. The carbon footprint of an uncemented THA was estimated at 100.02 kg CO2e, with a marginal increase to 104.89 kg CO2e for hybrid THA. Key contributors were consumables in the operating theatre (21%), waste generation (22%), and scope 2 emissions (38%). The study identified opportunities for reducing emissions, including instrument rationalization, transitioning to LED lighting, and improving waste-recycling practices. Conclusion. This study sheds light on the substantial carbon footprint associated with THA. Actionable strategies for reducing emissions were identified, emphasizing the need for sustainable practices in orthopaedic surgery. The findings prompt a critical discussion on the environmental impact of single-use versus reusable items in the operating theatre, challenging traditional norms to make more environmentally responsible choices. Cite this article: Bone Jt Open 2024;5(9):742–748


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 16 - 16
1 Dec 2022
Hornestam JF Abraham A Girard C Del Bel M Romanchuk N Carsen S Benoit D
Full Access

Background: Anterior cruciate ligament (ACL) injury and re-injury rates are high and continue to rise in adolescents. After surgical reconstruction, less than 50% of patients return to their pre-injury level of physical activity. Clearance for return-to-play and rehabilitation progression typically requires assessment of performance during functional tests. Pain may impact this performance. However, the patient's level of pain is often overlooked during these assessments. Purpose: To investigate the level of pain during functional tests in adolescents with ACL injury. Fifty-nine adolescents with ACL injury (ACLi; female n=43; 15 ± 1 yrs; 167.6 ± 8.4 cm; 67.8 ± 19.9 kg) and sixty-nine uninjured (CON; female n=38; 14 ± 2 yrs; 165.0 ± 10.8 cm; 54.2 ± 11.5 kg) performed a series of functional tests. These tests included: maximum voluntary isometric contraction (MVIC) and isokinetic knee flexion-extension strength tests, single-limb hop tests, double-limb squats, countermovement jumps (CMJ), lunges, drop-vertical jumps (DVJ), and side-cuts. Pain was reported on a 5-point Likert scale, with 1 indicating no pain and 5 indicating extreme pain for the injured limb of the ACLi group and non-dominant limb for the CON group, after completion of each test. Chi-Square test was used to compare groups for the level of pain in each test. Analysis of the level of pain within and between groups was performed using descriptive statistics. The distribution of the level of pain was different between groups for all functional tests (p≤0.008), except for ankle plantar flexion and hip abduction MVICs (Table 1). The percentage of participants reporting pain was higher in the ACLi group in all tests compared to the CON group (Figure 1). Participants most often reported pain during the strength tests involving the knee joint, followed by the hop tests and dynamic tasks, respectively. More specifically, the knee extension MVIC was the test most frequently reported as painful (70% of the ACLi group), followed by the isokinetic knee flexion-extension test, with 65% of ACLi group. In addition, among all hop tests, pain was most often reported during the timed 6m hop (53% of ACLi), and, among all dynamic tasks, during the side-cut (40% of ACLi) test (Figure 1). Furthermore, the tests that led to the higher levels of pain (severe or extreme) were the cross-hop (9.8% of ACLi), CMJ (7.1% of ACLi), and the isokinetic knee flexion-extension test (11.5% of ACLi) (Table 1). Adolescents with and without ACL injury reported different levels of pain for all functional tasks, except for ankle and hip MVICs. The isokinetic knee flexion-extension test resulted in greater rates of severe or extreme pain and was also the test most frequently reported as painful. Functional tests that frequently cause pain or severe level of pain (e.g., timed 6m and cross hops, side-cut, knee flexion/extension MVICs and isokinetic tests) might not be the first test choices to assess function in patients after ACL injury/reconstruction. Reported pain during functional tests should be considered by clinicians and rehabilitation team members when evaluating a patient's readiness to return-to-play. For any figures or tables, please contact the authors directly


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. Methods. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained. Results. Among 256 hips with AI outputs, all six hip AI measurements were successfully obtained. The AI-reader correlations were generally good (ICC 0.60 to 0.74) to excellent (ICC > 0.75). There was lower agreement for CCD angle measurement. Most widely used measurements for HD diagnosis (LCEA and Tönnis angle) demonstrated good to excellent inter-method reliability (ICC 0.71 to 0.86 and 0.82 to 0.90, respectively). The median reading time for the three readers and AI was 212 (IQR 197 to 230), 131 (IQR 126 to 147), 734 (IQR 690 to 786), and 41 (IQR 38 to 44) seconds, respectively. Conclusion. This study showed that AI-based software demonstrated reliable radiological assessment of patients with HD with significant interpretation-related time savings. Cite this article: Bone Jt Open 2022;3(11):877–884


Bone & Joint Open
Vol. 3, Issue 12 | Pages 960 - 968
23 Dec 2022
Hardwick-Morris M Wigmore E Twiggs J Miles B Jones CW Yates PJ

Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. Methods. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements. Results. Strong correlations were observed for all EOS measurements (r. s. > 0.9). The strongest correlation with AP radiograph (inter-teardrop line) was observed for functional-ASIS-to-floor (functional) (r. s. = 0.57), much weaker than the correlations between EOS measurements. ASIS-to-ankle measurements exhibited a high correlation to other linear measurements and the highest ICC (r. s. = 0.97). Using anterior superior iliac spine (ASIS)-to-ankle, 33% of patients had an absolute LLD of greater than 10 mm, which was statistically different from the inter-teardrop LLD measurement (p < 0.005). Discussion. We found that the conventional measurement of LLD on AP pelvic radiograph does not correlate well with long leg measurements and may not provide a true appreciation of LLD. ASIS-to-ankle demonstrated improved detection of potential LLD than other EOS and radiograph measurements. Full length, functional imaging methods may become the new gold standard to measure LLD. Cite this article: Bone Jt Open 2022;3(12):960–968


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 47 - 47
14 Nov 2024
Daneshvarhashjin N Debeer P Andersen MS Verhaegen F Scheys L
Full Access

Introduction. Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative planning. Its assessment informs current classification systems for shoulder osteoarthritis as well as the evaluation of surgical correction. In current clinical practice, HHM assessment relies on computed-tomography (CT) imaging. However, the associated supine position might undermine its functional relevance as it does not reflect the weight-bearing condition with active muscle engagement associated with the upright standing position of most daily activities. Therefore, we assessed to what extent HHM in a supine position is associated with HHM in a range of functional arm positions. Method. 26 shoulder osteoarthritis patients and 12 healthy volunteers were recruited. 3D shapes of the humerus and scapula were reconstructed from their respective CT scans using an image processing software. 3. , and their CT-scan-based HHMs were measured. Furthermore, all subjects underwent low-dose biplanar radiography . 4. in four quasi-static functional arm positions while standing: relaxed standing, followed by 45 degrees of shoulder extension, flexion, and abduction. Using a previously validated method implemented in the programming platforms. 5. , 3D shapes were registered to the pairs of biplanar images for each arm position and the corresponding functional HHM was measured. Bivariate correlations were assessed between the CT-based HHM and each functional arm position. Result. HHM in 45 degrees of flexion and extension both showed significant and strong correlations (r>0.66 and P<0.01) with HHM assessed in the supine position. However, such a high correlation was not found for relaxed standing and 45 abduction. Conclusion. Although HHM in a supine position correlates with HHM in 45-degree extension and flexion, it is poorly associated with the HHM in abduction and relaxed standing. These results may suggest the inclusion of more functionally-relevant patient positioning toward better-informed shoulder arthroplasty planning. Acknowledgement. Funding from PRosPERos-II Project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 28 - 28
23 Feb 2023
Boudali A Chai Y Farey J Vigdorchik J Walter W
Full Access

The spinopelvic alignment is often assessed via the Pelvic Incidence-Lumbar Lordosis (PI-LL) mismatch. Here we describe and validate a simplified method to evaluating the spinopelvic alignment through the L1-Pelvis angle (L1P). This method is set to reduce the operator error and make the on-film measurement more practicable. 126 standing lateral radiographs of patients presenting for Total Hip Arthroplasty were examined. Three operators were recruited to label 6 landmarks. One operator repeated the landmark selection for intra-operator analysis. We compare PI-LL mismatch obtained via the conventional method, and our simplified method where we estimate this mismatch using PI-LL = L1P - 90°. We also assess the method's reliability and repeatability. We found no significant difference (p > 0.05) between the PI-LL mismatch from the conventional method (mean 0.22° ± 13.6) compared to L1P method (mean 0.0° ± 13.1). The overall average normalised root mean square error (NRMSE) for PI-LL mismatch across all operators is 7.53% (mean -3.3° ± 6.0) and 6.5% (mean -2.9° ± 4.9) for the conventional and L1P method, respectively. In relation to intra-operator repeatability, the correlation coefficients are 0.87 for PI, 0.94 for LL, and 0.96 for L1P. NRMSE between the two measurement sets are PI: 9.96%, LL: 5.97%, and L1P: 4.41%. A similar trend is observed in the absolute error between the two sets of measurements. Results indicate an equivalence in PI-LL measurement between the methods. Reproducibility of the measurements and reliability between operators were improved. Using the L1P angle, the classification of the sagittal spinal deformity found in the literature translates to: normal L1P<100°, mild 100°<L1P<110°, and severe L1P>110°. Surgeons adopting our method should expect a small improvement in reliability and repeatability of their measurements, and a significant improvement of the assessment of the mismatch through the visualisation of the angle L1P


Bone & Joint Open
Vol. 5, Issue 10 | Pages 904 - 910
18 Oct 2024
Bergman EM Mulligan EP Patel RM Wells J

Aims. The Single Assessment Numerical Evalution (SANE) score is a pragmatic alternative to longer patient-reported outcome measures (PROMs). The purpose of this study was to investigate the concurrent validity of the SANE and hip-specific PROMs in a generalized population of patients with hip pain at a single timepoint upon initial visit with an orthopaedic surgeon who is a hip preservation specialist. We hypothesized that SANE would have a strong correlation with the 12-question International Hip Outcome Tool (iHOT)-12, the Hip Outcome Score (HOS), and the Hip disability and Osteoarthritis Outcome Score (HOOS), providing evidence for concurrent validity of the SANE and hip-specific outcome measures in patients with hip pain. Methods. This study was a cross-sectional retrospective database analysis at a single timepoint. Data were collected from 2,782 patients at initial evaluation with a hip preservation specialist using the iHOT-12, HOS, HOOS, and SANE. Outcome scores were retrospectively analyzed using Pearson correlation coefficients. Results. Mean raw scores were iHOT-12 67.01 (SD 29.52), HOS 58.42 (SD 26.26), HOOS 86.85 (SD 32.94), and SANE 49.60 (SD 27.92). SANE was moderately correlated with the iHOT-12 (r = -0.4; 95% CI -0.35 to -0.44; p < 0.001), HOS (r = 0.57; 95% CI 0.53 to 0.60; p < 0.001), and HOOS (r = -0.55; 95% CI -0.51 to -0.58; p < 0.001). The iHOT-12 and HOOS were recorded as a lower score, indicating better function, which accounts for the negative r values. Conclusion. This study was the first to investigate the relationship between the SANE and the iHOT-12, HOS, and HOOS in a population of patients with hip pain at the initial evaluation with an orthopaedic surgeon, and found moderate correlation between SANE and the iHOT-12, HOS, and HOOS. The SANE may be a pragmatic alternative for clinical benchmarking in a general population of patients with hip pain. The construct validity of the SANE should be questioned compared to legacy measures whose content validity has been more rigorously investigated. Cite this article: Bone Jt Open 2024;5(10):904–910


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 24 - 24
17 Apr 2023
Cooper N Etchels L Lancaster-Jones O Williams S Wilcox R
Full Access

Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading. A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a hip simulator. Microstructural measurements by Raman spectroscopy were taken at unloaded and highly loaded rim locations informed by FE results. Gravimetric and geometric measurements were taken every 1Mc cycles. Under edge loading, peak Mises stress and plastic deformation occur below the surface of the rim during heel strike. After 7Mc, microstructural analysis determined edge loaded regions had an increased crystalline mass fraction compared to unloaded regions (p<0.05). Gravimetric wear rates of 12.5mm. 3. /Mc and 22.3mm. 3. /Mc were measured for standard and edge loading respectively. A liner penetration of 0.37mm was measured after 7Mc. Edge loading led to an increase in gravimetric wear rate indicating a different wear mechanism is occurring. FE and Raman results suggest that changes to material behaviour at the rim could be possible. These methods will now be used to assess more liners and over a larger number of cycles. They have potential to explore the impact of edge loading on different surgical and patient variables


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 110 - 110
23 Feb 2023
Francis S Murphy B Elsiwy Y Babazadeh S Clement N Stoney J Stevens J
Full Access

This study aims to implement and assess the inter and intra-reliability of a modernised radiolucency assessment system; the Radiolucency In cemented Stemmed Knee (RISK) arthroplasty classification. Furthermore, we assessed the distribution of regions affected by radiolucency in patients undergoing stemmed cemented knee arthroplasty. Stemmed knee arthroplasty cases over 7-year period at a single institution were retrospectively identified and reviewed. The RISK classification system identifies five zones in the femur and five zones in the tibia in both the anteroposterior (AP) and lateral planes. Post-operative and follow-up radiographs were scored for radiolucency by four blinded reviewers at two distinct time points four weeks apart. Reliability was assessed using the kappa statistic. A heat map was generated to demonstrate the reported regions of radiolucency. 29 cases (63 radiographs) of stemmed knee arthroplasty were examined radiographically using the RISK system. Intra-reliability (0.83) and Inter-reliability (0.80) scores were both consistent with a strong level of agreement using the kappa scoring system. Radiolucency was more commonly associated with the tibial component (76.6%) compared to the femoral component (23.3%), and the tibial anterior-posterior (AP) region 1 (medial plateau) was the most affected (14.9%). The RISK classification system is a reliable assessment tool for evaluating radiolucency around stemmed knee arthroplasty using defined zones on both AP and lateral radiographs. Zones of radiolucency identified in this study may be relevant to implant survival and corresponded well with zones of fixation, which may help inform future research


Bone & Joint Open
Vol. 2, Issue 2 | Pages 111 - 118
8 Feb 2021
Pettit M Shukla S Zhang J Sunil Kumar KH Khanduja V

Aims. The ongoing COVID-19 pandemic has disrupted and delayed medical and surgical examinations where attendance is required in person. Our article aims to outline the validity of online assessment, the range of benefits to both candidate and assessor, and the challenges to its implementation. In addition, we propose pragmatic suggestions for its introduction into medical assessment. Methods. We reviewed the literature concerning the present status of online medical and surgical assessment to establish the perceived benefits, limitations, and potential problems with this method of assessment. Results. Global experience with online, remote virtual examination has been largely successful with many benefits conferred to the trainee, and both an economic and logistical advantage conferred to the assessor or organization. Advances in online examination software and remote proctoring are overcoming practical caveats including candidate authentication, cheating prevention, cybersecurity, and IT failure. Conclusion. Virtual assessment provides benefits to both trainee and assessor in medical and surgical examinations and may also result in cost savings. Virtual assessment is likely to be increasingly used in the post-COVID world and we present recommendations for the continued adoption of virtual examination. It is, however, currently unable to completely replace clinical assessment of trainees. Cite this article: Bone Jt Open 2021;2(2):111–118


Accurate evaluation of lower limb coronal alignment is essential for effective pre-operative planning of knee arthroplasty. Weightbearing hip-knee-ankle (HKA) radiographs are considered the gold standard. Mako SmartRobotics uses CT-based navigation to provide intra-operative data on lower limb coronal alignment during robotic assisted knee arthroplasty. This study aimed to compare the correlation between the two methods in assessing coronal plane alignment. Patients undergoing Mako partial (PKA) or total knee arthroplasty (TKA) were identified from our hospital database. The hospital PACS system was used to measure pre-operative coronal plane alignment on HKA radiographs. This data was correlated to the intraoperative deformity assessment during Mako PKA and TKA surgery. 443 consecutive Mako knee arthroplasties were performed between November 2019 and December 2021. Weightbearing HKA radiographs were done in 56% of cases. Data for intraoperative coronal plane alignment was available for 414 patients. 378 knees were aligned in varus, and 36 in valgus. Mean varus deformity was 7.46° (SD 3.89) on HKA vs 7.13° (SD 3.56) on Mako intraoperative assessment, with a moderate correlation (R= 0.50, p<0.0001). Intraoperative varus deformity of 0-4° correlated to HKA measured varus (within 3°) in 60% of cases, compared to 28% for 5-9°, 17% for 10-14°, and in no cases with >15° deformity. Mean valgus deformity was 6.44° (SD 4.68) on HKA vs 4.75° (SD 3.79) for Mako, with poor correlation (R=0.18, p=0.38). In this series, the correlation between weightbearing HKA radiographs and intraoperative alignment assessment using Mako SmartRobotics appears to be poor, with greater deformities having poorer correlation