Aims. To develop a core outcome set of measurements from postoperative radiographs that can be used to assess technical skill in performing dynamic hip screw (DHS) and hemiarthroplasty, and to validate these against Van der Vleuten’s criteria for effective
Aims. To identify a core outcome set of postoperative radiographic measurements to assess technical skill in ankle fracture open reduction internal fixation (ORIF), and to validate these against Van der Vleuten’s criteria for effective
In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical
The UK falls behind other European countries in the early detection of Developmental Dysplasia of the hip (DDH) and there remains controversy surrounding screening strategies for early detection. Clinical detection of DDH is challenging and recognised to be dependent on examiner experience. No studies exist assessing the number of personnel currently involved in such
Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual
Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its
The primary aim was to assess the reliability of ultrasound in the
Aims. Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time
Range of Motion (ROM)
Aims. This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Methods. Using a life-cycle
Background: Anterior cruciate ligament (ACL) injury and re-injury rates are high and continue to rise in adolescents. After surgical reconstruction, less than 50% of patients return to their pre-injury level of physical activity. Clearance for return-to-play and rehabilitation progression typically requires
Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader
Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. Methods. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD
Introduction.
The spinopelvic alignment is often assessed via the Pelvic Incidence-Lumbar Lordosis (PI-LL) mismatch. Here we describe and validate a simplified method to evaluating the spinopelvic alignment through the L1-Pelvis angle (L1P). This method is set to reduce the operator error and make the on-film measurement more practicable. 126 standing lateral radiographs of patients presenting for Total Hip Arthroplasty were examined. Three operators were recruited to label 6 landmarks. One operator repeated the landmark selection for intra-operator analysis. We compare PI-LL mismatch obtained via the conventional method, and our simplified method where we estimate this mismatch using PI-LL = L1P - 90°. We also assess the method's reliability and repeatability. We found no significant difference (p > 0.05) between the PI-LL mismatch from the conventional method (mean 0.22° ± 13.6) compared to L1P method (mean 0.0° ± 13.1). The overall average normalised root mean square error (NRMSE) for PI-LL mismatch across all operators is 7.53% (mean -3.3° ± 6.0) and 6.5% (mean -2.9° ± 4.9) for the conventional and L1P method, respectively. In relation to intra-operator repeatability, the correlation coefficients are 0.87 for PI, 0.94 for LL, and 0.96 for L1P. NRMSE between the two measurement sets are PI: 9.96%, LL: 5.97%, and L1P: 4.41%. A similar trend is observed in the absolute error between the two sets of measurements. Results indicate an equivalence in PI-LL measurement between the methods. Reproducibility of the measurements and reliability between operators were improved. Using the L1P angle, the classification of the sagittal spinal deformity found in the literature translates to: normal L1P<100°, mild 100°<L1P<110°, and severe L1P>110°. Surgeons adopting our method should expect a small improvement in reliability and repeatability of their measurements, and a significant improvement of the
Aims. The Single
Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural
This study aims to implement and assess the inter and intra-reliability of a modernised radiolucency
Aims. The ongoing COVID-19 pandemic has disrupted and delayed medical and surgical examinations where attendance is required in person. Our article aims to outline the validity of online
Accurate evaluation of lower limb coronal alignment is essential for effective pre-operative planning of knee arthroplasty. Weightbearing hip-knee-ankle (HKA) radiographs are considered the gold standard. Mako SmartRobotics uses CT-based navigation to provide intra-operative data on lower limb coronal alignment during robotic assisted knee arthroplasty. This study aimed to compare the correlation between the two methods in assessing coronal plane alignment. Patients undergoing Mako partial (PKA) or total knee arthroplasty (TKA) were identified from our hospital database. The hospital PACS system was used to measure pre-operative coronal plane alignment on HKA radiographs. This data was correlated to the intraoperative deformity