Advertisement for orthosearch.org.uk
Results 1 - 20 of 115
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 34 - 34
17 Nov 2023
Elliott M Rodrigues R Hamilton R Postans N Metcalfe A Jones R McGregor A Arvanitis T Holt C
Full Access

Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern machine learning methods, where large, complex datasets can be used to identify patterns in the data. Using these data-driven approaches, it could be possible to better predict the optimal interventions for patients at an early stage, potentially avoiding pain and inappropriate surgery or rehabilitation. In this project we developed a prototype database platform for combining and sharing biomechanics datasets. The database includes methods for importing and standardising data and associated variables, to create a seamless, searchable combined dataset of both healthy and knee OA biomechanics. Methods. Data was curated through calls to members of the OATech Network+ (. https://www.oatechnetwork.org/. ). The requirements were 3D motion capture data from previous studies that related to analysing the biomechanics of knee OA, including participants with OA at any stage of progression plus healthy controls. As a minimum we required kinematic data of the lower limbs, plus associated kinetic data (i.e. ground reaction forces). Any additional, complementary data such as EMG could also be provided. Relevant ethical approvals had to be in place that allowed re-use of the data for other research purposes. The datasets were uploaded to a University hosted cloud platform. The database platform was developed using Javascript and hosted on a Windows server, located and managed within the department. Results. Three independent datasets were curated following the call to OATech Network+ members. These originated from separate studies collected from biomechanics labs at Cardiff University, Keele University, and Imperial College London. Participants with knee OA were at various stages of progression and all datasets included healthy controls. The total sample size of the three datasets is n=244, split approximately equally between healthy and knee OA participants. Naming conventions and formatting of the exported data varied greatly across datasets. Datasets were therefore formatted into a common format prior to upload, with guidelines developed for future contributions. Uploading data at the marker set level was too complicated for combination at the prototype stage. Therefore, processed variables relating to joint angles and joint moments were used. The resulting prototype database included an import function to align and standardise variables. A a simple query tool was further developed to extract outputs from the database, along with a suitable user interface for basic data exploration. Conclusion. Combining biomechanics dataset presents a wide range of challenges from both a technical and data governance context. Here we have taken the first steps to demonstrate a proof-of-concept that can combine heterogenous data from independent OA-related biomechanics studies into a combined, searchable resource. Expanding this in the future to a fully open access database will create an essential resource that will facilitate the application of data-driven models and analyses for better understanding, stratification and prediction of OA progression. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion. Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 77 - 77
2 Jan 2024
Gueorguiev B Varga P
Full Access

Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation.

The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements.

The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract

Objectives

While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis.

Methods

Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 83 - 83
1 Jul 2022
Dandridge O Garner A Amis A Cobb J Arkel RV
Full Access

Abstract

Patellofemoral Arthroplasty (PFA) is an alternative to TKA for patellofemoral osteoarthritis that preserves tibiofemoral compartments. It is unknown how implant positioning affects biomechanics, especially regarding the patella. This study analysed biomechanical effects of femoral and patellar component position, hypothesising femoral positioning is more important.

Nine cadaveric knees were studied using a repeated-measures protocol. Knees were tested intact, then after PFA implanted in various positions: neutral (as-planned), patellar over/understuffing (±2mm), patellar tilt, patellar flexion, femoral rotation, and femoral tilt (all ±6°). Arthroplasties were implemented with CT-designed patient-specific instrumentation. Anterior femoral cuts referenced Whiteside's line and all femoral positions ensured smooth condyle-to-component transition. Knee extension moments, medial patellofemoral ligament (MPFL) length-change, and tibiofemoral and patellofemoral kinematics were measured under physiological muscle loading. Data were analysed with one-dimensional statistical parametric mapping (Bonferroni-Holm corrected).

PFA changed knee function, altering extension moments (p<0.001) and patellofemoral kinematics (p<0.05), but not tibiofemoral kinematics. Patellar component positioning affected patellofemoral kinematics: over/understuffing influenced patellar anterior translation and the patellar tendon moment arm (p<0.001). Medially tilted patellar cuts produced lateral patellar tilt (p<0.001) and vice versa. A similar inverse effect occurred with extended/flexed patellar cuts, causing patellar flexion and extension (p<0.001), respectively. Of all variants, only extending the patellar cut produced near-native extension moments throughout. Conversely, the only femoral effect was MPFL length change between medially/laterally rotated components.

PFA can restore native knee biomechanics. Provided anterior femoral cuts are controlled and smooth condyle-to-component transition assured, patellar position affects biomechanics more than femoral, contradicting the hypothesis.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 11 - 11
7 Aug 2024
Warren JP Khan A Mengoni M
Full Access

Objectives

Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis.

Methods and Results

Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected.

Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 46 - 46
1 Dec 2021
Yarwood W Kumar KHS Ng KCG Khanduja V
Full Access

Abstract

Purpose

The aim of this study was to assess how biomechanical gait parameters (kinematics, kinetics, and muscle force estimations) differ between patients with camtype FAI and healthy controls, through a systematic search.

Methods

A systematic review of the literature from PubMed, Scopus, and Medline and EMBASE via OVID SP was undertaken from inception to April 2020 using PRISMA guidelines. Studies that described kinematics, kinetics, and/or estimated muscle forces in cam-type FAI were identified and reviewed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 15 - 15
1 Mar 2021
Kadar A Haddara M Fan S Chinchalkar S Ferreira L Suh N
Full Access

Normal digital flexion relies on flexor tendon pulleys to transmit linear muscular force to angular digital motion. Despite the critical role these pulleys play, there is a growing trend among surgeons to partially sacrifice or “vent” them during flexor tendon repair to improve surgical exposure. Although this new practice is reported to improve outcomes after flexor tendon repair, there is concern for the long-term effects of bowstringing, reduced finger range of motion (ROM) and altered tendon biomechanics. The objective of this study was to examine the effects of the application of a thermoplastic ring, acting as an “external” pulley, on flexor tendon biomechanics and finger ROM. We hypothesized that the application of an external thermoplastic ring would produce a centripetal force over the tendon to reduce bowstringing, improve finger ROM, and restore tendon loads following pulley venting

Twelve digits comprised of the index, long, and ring fingers from four cadaveric specimens were tested using a novel in-vitro active finger motion simulator. Servo-motors were used to generate motion. Loads induced by flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP), and joint range of motion were measured with each sequential sectioning of the A2, A3, and A4 flexor pulley, in comparison to a native healthy finger condition. At each finger condition, A2 and A4 external thermoplastic pulley rings were applied over the proximal phalanx and middle phalanx, respectively, to recreate A2 and A4 function. Results were recorded and analyzed using a one way repeated-measures ANOVA.

Following venting of the A2, A3 and A4 pulley, proximal interphalangeal joint (PIPJ) ROM significantly decreased by 17.02 ± 8.42 degrees and distal interphalangeal joint (DIPJ) range of motion decreased by 17.25 ± 8.68 degrees compared to intact pulleys. Application of the external rings restored range of motion to within 8.14 ± 8.17 degrees at the PIPJ and to within 7.72 ± 8.95 degrees at the DIPJ. Similarly, pulley venting resulted in a 36% reduction in FDS load and 50% in FDP load compared to intact pulleys. Following application of the external rings, loads were almost restored to normal at 7% reduction for FDS load and 13% reduction for FDP load.

Venting of flexor tendon pulleys significantly alters flexor tendon biomechanics and digit range of motion. The application of thermoplastic rings acting as external pulleys over the proximal and middle phalanges is an effective, inexpensive, non-invasive and reproducible therapeutic method to restore flexor tendon biomechanics and digit range of motion.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 121 - 121
1 Apr 2019
Renders T Heyse T Catani F Sussmann P De Corte R Labey L
Full Access

Introduction

Unicompartmental knee arthroplasty (UKA) currently experiences increased popularity. It is usually assumed that UKA shows kinematic features closer to the natural knee than total knee arthroplasty (TKA). Especially in younger patients more natural knee function and faster recovery have helped to increase the popularity of UKA. Another leading reason for the popularity of UKA is the ability to preserve the remaining healthy tissues in the knee, which is not always possible in TKA. Many biomechanical questions remain, however, with respect to this type of replacement.

25% of knees with medial compartment osteoarthritis also have a deficient anterior cruciate ligament [1]. In current clinical practice, medial UKA would be contraindicated in these patients. Our hypothesis is that kinematics after UKA in combination with ACL reconstruction should allow to restore joint function close to the native knee joint. This is clinically relevant, because functional benefits for medial UKA should especially be attractive to the young and active patient.

Materials and Methods

Six fresh frozen full leg cadaver specimens were prepared to be mounted in a kinematic rig (Figure 1) with six degrees of freedom for the knee joint. Three motion patterns were applied: passive flexion-extension, open chain extension, and squatting. These motion patterns were performed in four situations for each specimen: with the native knee; after implantation of a medial UKA (Figure 2); next after cutting the ACL and finally after reconstruction of the ACL. During the loaded motions, quadriceps and hamstrings muscle forces were applied. Infrared cameras continuously recorded the trajectories of marker frames rigidly attached to femur, tibia and patella. Prior computer tomography allowed identification of coordinate frames of the bones and calculations of anatomical rotations and translations. Strains in the collateral ligaments were calculated from insertion site distances.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 12 - 12
1 Mar 2017
Smyth A Fisher J Suñer S Brockett C
Full Access

Introduction

Total ankle replacement (TAR) is surgically complex; malalignment can arise due to surgical technique or failure to correct natural varus/valgus malalignment. Across joint replacement, malalignment has been associated with pain, component edge loading, increased wear and higher failure rates. Good component alignment is considered instrumental for long term TAR success. The conforming surface geometry of mobile bearing TARs leaves no freedom for coronal plane malalignment. The aim of this study was to investigate the biomechanical effect of coronal alignment on a mobile bearing TAR.

Methods

Three TARs (Zenith, Corin Group) were tested under five coronal malalignment angles from 0–10° in a single station electromechanical knee simulator applying a typical ankle gait profile. As swing phase load is critical to TAR contact mechanics but will vary depending on the joint laxity. Swing loads of 100N, 300N and 500N were investigated. A positive control test with a swing load of 1000N was also studied, and was expected to eliminate the majority of lift off effects. Under each condition, the version was allowed to move freely while tests were performed, and the version profile under each alignment angle was recorded. Each test was carried out for 600 cycles in 25% bovine serum. Under the same loading conditions, but without lubrication, a Tekscan sensor recorded data from two cycles to assess the change in contact pressure and area at the five coronal angles.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 17 - 17
1 Mar 2021
Mouton C Magosch A Nührenbörger C Seil R
Full Access

Recent findings have identified the importance of previously undiagnosed or neglected meniscus lesions in association with anterior cruciate ligament (ACL) injuries (e.g. medial meniscus ramp lesions and posterior root tears of the lateral meniscus). There is increasing biomechanical evidence that they bear the potential to alter both anteroposterior and rotational laxity patterns in ACL injured knees. Few data exist with respect to the presence of these specific tear entities in large series of ACL injured patients. The purpose of the study was to analyze the meniscus tear pattern in a series of ACL injured knees with a special focus on ramp lesions of the medial meniscus and posterior root lesions of the lateral meniscus. The hypothesis was that a significant number of ACL injured patients would display these types of lesions.

Data from 358 patients undergoing an ACL reconstruction (227 males /131 females, age: 28±10) were extracted from a center-based registry. The type of ACL tear (partial versus complete) as well as the presence of associated meniscus lesions were documented. Meniscus lesions were classified into the following categories: medial ramp lesions, lateral root lesions, medial ramp and lateral root lesion, other medial meniscus injuries, other lateral meniscus injuries, other bimeniscal injuries. Chi-square tests were used to determine whether the percentage of meniscal lesions differed between types of ACL tear, gender and age (below 21, 21–35, above 35). Significance was set at p < 0.05.

Isolated ACL tears were present in 107 (30%) of the operated knees (31 partial; 327 complete). Complete ACL lesions were more likely to present an associated meniscus injury (321 out of 327, 71%) than partial tears (13 out of 31, 42%).

The incidence of meniscus injuries which are associated with ACL tears is very high (70%). Previously undiagnosed or neglected meniscus injuries like medial ramp or lateral root tears could be identified in 35% of patients. As such, the hypothesis was confirmed that an important amount of ACL injured knees display this specific intraarticular soft tissue damage. A systematic evaluation of these lesions under arthroscopy should thus be performed and specific repair needs to be evaluated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 31 - 31
1 Apr 2018
Vergroesen PP Emanuel K Peeters M Kingma I Smit T
Full Access

The intervertebral disc faces high compressive forces during daily activities. Axial compression induces creeping fluid loss and reduction in disc height. With degeneration, disc fluids and height are progressively lost, altering biomechanics. It is assumed that this loss of fluids is caused by a drop in osmolality in the disc due to proteoglycan depletion. Here we investigate the isolated effect of a reduction in osmosis on the biomechanical properties of the intervertebral disc. Continuous diurnal loading was applied to healthy caprine intervertebral discs in a loaded disc culture system for a total of 6 days. We increased testing bath osmolality with two doses of polyethylene-glycol (PEG), thereby reducing the osmotic gradient between the disc and the surrounding fluid. This way we could study the isolated effect of reduced osmosis on axial creep, without damaging the disc. We evaluated: daily creep and recovery, recovery time-constants and compressive stiffness. Additionally, we investigated water content. There was a strong dose-dependent effect of PEG concentration on water content and axial creep behaviour: disc height, amplitude and rate of creep and recovery were all significantly reduced. Axial compressive stiffness of the disc was not affected. Reduction of water content and amplitude of creep and recovery showed similarity to degenerative disc biomechanics. However, the time-constants increased, indicating that the hydraulic permeability was reduced, in contrast to what happens with degeneration. This suggests that besides the osmotic gradient, the permeability of the tissues determines healthy intervertebral disc biomechanics.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 108 - 108
1 Apr 2019
Riviere C Maillot C Auvinet E Cobb J
Full Access

Introduction

The objective of our study was to determine the extent to which the quality of the biomechanical reconstruction when performing hip replacement influences gait performances. We aimed to answer the following questions: 1) Does the quality of restoration of hip biomechanics after conventional THR influence gait outcomes? (question 1), and 2) Is HR more beneficial to gait outcomes when compared with THR? (question 2).

Methods

we retrospectively reviewed 52 satisfied unilateral prosthetic hip patients (40 THRs and 12 HRs) who undertook objective gait assessment at a mean follow-up of 14 months. The quality of the prosthetic hip biomechanical restoration was assessed on standing pelvic radiograph by comparison to the healthy contralateral hip.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 36 - 36
1 Nov 2018
Vaughan T
Full Access

The complex structural arrangement of bone gives rise to anisotropic, rate-dependent failure behaviour, which varies significantly depending on tissue composition and architecture. This presents significant challenges in the development of orthopaedic surgical cutting instruments, which are required to generate sufficient forces to penetrate bone tissue, while minimizing the risk of thermal and mechanical damage to the surrounding environment. Currently, instrument designers rely heavily on empirical-based strategies to understand tool-bone interactions, with significant amounts of prototyping and validation experiments required throughout the design process. The aim of this study is to develop an experimentally-validated predictive computational model of orthopaedic cutting processes in three dimensions to understand the role of various cutting parameters on cutting forces and chip formation. An experimental model of orthogonal cutting was developed, whereby an adaptable cutting tool fixture driven by a servo-hydraulic uniaxial test machine was used to carry out high-rate cutting tests on Sawbone® trabecular bone analogues. A three-dimensional computational model was also developed using Abaqus/Explicit. The constitutive model describing material behaviour considers strain-rate and pressure-dependant yield behaviour using a Drucker-Prager elastic-plastic damage model, with Strain-hardening and rate-dependent model constants determined through dynamic uniaxial high-strain rate compression tests of material cubes. An excellent correlation between experimental and computational models was found, with the computational model accurately predicting tool cutting forces and chip development ahead of the tool during the cutting process. It was identifying that lower tool rake-angles resulted in the formation of larger discontinuous chips and higher cutting forces, while higher rake angles tended to lead to more continuous chip formation and lower cutting forces.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 62 - 62
1 Jan 2018
Muirhead-Allwood S Jeffers J
Full Access

The hip joint capsule passively restrains extreme range of motion protecting against impingement, dislocation and possibly edge loading. These functions would be advantageous following total hip arthroplasty (THA) however the degree of capsular excision, preservation and/or repair greatly varies between surgeons/approaches. Therefore, we asked: how does THA affect capsular ligamentous biomechanics? Which factors have the biggest influence?

For this laboratory based, cadaveric model, THA was performed through the acetabular medial wall, thus preserving the entire hip capsule. A previously published testing rig was used to measure capsular function by internally and externally rotating the hip in each of five hip positions (standing, sitting, gait heel strike, and two impingement risk positions, full flexion with adduction & extension with abduction). N=8 hips were tested both before and after THA allowing for repeated measurements between the native and replaced hip.

The ROM before the capsule engaged increased following THA (p<0.05), indicating reduced biomechanical function. Internal rotation was affected more than external rotation. Increasing neck length restored the ROM more towards the native condition. Increasing head size also had a small positive effect, but less than neck length.

Following THA, the capsular ligaments were no longer able to wrap around the smaller femoral head thereby limiting their ability to restrain excessive hip movement. The anterior capsule is affected less than the posterior, and may benefit from being preserved length. A repair to the posterior capsule should compensate for the reduced THA head size in order to restore function.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 44 - 44
1 Jan 2003
Itoi E
Full Access

Anatomy of the rotator cuff tendons, their relationship to the greater tuberosity, and the tensile and compressive properties of the cuff tendons have been extensively studied recently. From these anatomical and biomechanical studies, it has been clarified that stress concentration at the anterior portion of the supraspinatus tendon, shearing force, and mechanical friction as well as the degenerative weakness of the cuff tendons can all play a role in the occurrence of a tear. Strength of initial repair is limited, and thus the arm after repair should be positioned such that undue tension at the repair site is eliminated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 21 - 21
1 May 2018
Edwards D Rosenberg N Karunaratne A Clasper J Bull A
Full Access

Electron Microscopy and Synchrotron analysis of Heterotopic Ossification (HO) from blast-related amputees' has shown that HO is bone with a disorganised structure and altered remodelling. This research performs mechanical testing of HO to understand its biomechanical properties in an attempt to create an accurate model to predict its morphological appearance. The hypothesis of this work is that HO is mechanically mediated in its formation.

Synchrotron mechanical analysis of HO samples was performed to measure Young's modulus, ultimate strength and density distribution. A novel algorithm based on Wolf's law was implemented in a Finite Element (FE) analysis model of HO to take into account the differing mechanical and biological properties measured and the presence of HO outside the skeletal system.

An HO modeling factor, which considers boundary conditions, and regulates recruitment of the soft tissue into bone formation, results in a re-creatable formation of HO within the soft tissues, comparable to the appearance of HO seen in military amputees. The results and model demonstrates that certain types of HO are under the control of endogenous and exogenous mechanical stimulus. HO can thus be mechanically exploited in the casualty management and rehabilitation process to achieve better clinical outcomes.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 52 - 52
1 Mar 2008
Manson N McKean K Stanish W
Full Access

Prospective analysis of a homogeneous group of ninety-two well-trained runners quantified injury parameters in relation to objective gait measurements. A negative correlation was found between peak tibial acceleration and magnitude of rearfoot motion for specific injury locations, suggesting that objective biomechanical parameters may be implicated in, or conversely, may be predictive of running injury. Gait as a predictor of specific running injury may hold merit in the prevention of running related injuries and the industry of athletic footwear design.

The purpose of this study was to determine the relationship between rearfoot motion and shock attenuation during running and their link to injury in trained runners.

Rearfoot motion appears to affect shock transmission through the tibia in athletes sustaining specific injuries.

Objective biomechanical parameters may be implicated, or conversely, may be predictive of running injury. This relationship has implications in the industry of shoe design and the prevention of running related injuries.

Injury rate during the one-year study period was 52%. Injury to the lower leg (e.g. shin splints, stress fracture) was the most common, comprising 22.7% of all injuries. A negative correlation was found between peak tibial acceleration and magnitude of rearfoot motion in several injury groups (r2=0.35–0.65), suggesting a biomechanical mechanism influencing impact forces. Such a mechanism was not apparent in athletes not demonstrating injury (r2=0.00).

Ninety-two well-trained, intercollegiate running athletes (forty women, fifty-two men) were prospectively monitored through biomechanical analysis, survey data, daily log and physician assessment. Subjects ran on a treadmill at 3.8m/s in a fatigued state. Rearfoot motion was assessed via coronal plane video (60Hz). Shock transmission at the tibia was measured using uniaxial accelerometers (1000Hz). Athletes reported injury, location and associated factors. A CASM qualified physician corroborated diagnosis. Outcome measures included the occurrence of a running related injury affecting the athlete’s ability to train or compete, frequency of injury location and diagnosis. Peak tibial acceleration and average range of rearfoot motion were quantified for each athlete. Pearson product moment determined correlation between biomechanical variables according to injury location.

Funding: A research grant was provided by the Nike Sport Research Laboratory, Beaverton, Oregon


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 103 - 103
1 Apr 2019
Westrich GH Swanson K Cruz A Kelly C Levine A
Full Access

INTRODUCTION

Combining novel diverse population-based software with a clinically-demonstrated implant design is redefining total hip arthroplasty. This contemporary stem design utilized a large patient database of high-resolution CT bone scans in order to determine the appropriate femoral head centers and neck lengths to assist in the recreation of natural head offset, designed to restore biomechanics. There are limited studies evaluating how radiographic software utilizing reference template bone can reconstruct patient composition in a model. The purpose of this study was to examine whether the application of a modern analytics system utilizing 3D modeling technology in the development of a primary stem was successful in restoring patient biomechanics, specifically with regards to femoral offset (FO) and leg length discrepancy (LLD).

METHODS

Two hundred fifty six patients in a non-randomized, post-market multicenter study across 7 sites received a primary cementless fit and fill stem. Full anteroposterior pelvis and Lauenstein cross-table lateral x-rays were collected preoperatively and at 6-weeks postoperative. Radiographic parameters including contralateral and operative FO and LLD were measured. Preoperative and postoperative FO and LLD of the operative hip were compared to the normal, native hip. Clinical outcomes including the Harris Hip Score (HHS), Lower Extremity Activity Scale (LEAS), Short Form 12 (SF12), and EuroQol 5D Score (EQ-5D) were collected preoperatively, 6 weeks postoperatively, and at 1 year.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 290 - 290
1 Sep 2005
Kaspar S Dickey J Perrier J Bednar D
Full Access

Introduction and Aims: Clinical studies report successful treatment of hangman’s fractures by direct screw repair followed by a collar post-operatively. However, to date there has not been a biomechanical analysis of failure strength of direct lag screw fixation of hangman’s fracture, relative to the strength of the intact specimens.

Method: This repeated measures biomechanical study evaluates the tensile force required to cause bipedicular (hangman’s) fractures in isolated porcine C2 specimens, and the subsequent force to failure after direct fracture repair with bipedicular lag screws. Of 60 mounted porcine C2 specimens subjected to tensile antero-posterior force, hangman’s fracture occurred in 15 cases, 12 of which were fixed with bipedicular 4.0 mm lag screws. These fixed specimens were re-tested to failure in the same manner.

Results: Most specimens had laminar fractures after application of tensile force, with 15 of 60 (25.0%) exhibiting bipedicular fractures. The force to bipedicular failure was 3259.1 + 148.5 N (mean + SEM). After screw fixation, the force to failure of the same specimens was 882.0 + 108.5 N (mean + SEM), or 27.3% of the intact bone.

Conclusion: The pullout strength was substantial (882 N), although the relative strength of fixation was only 27.3% of the fracture strength exhibited by the intact specimens. We discuss the findings in relation to previous studies. This is the first study to examine screw pull-out forces after direct repair of hangman’s fracture. One or more of the authors are receiving or have received material benefits or support from a commercial source.