Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 232 - 232
1 May 2006
Al-Maiyah M Mehta J Fender D Gibson MJ
Full Access

Background: To evaluate bone mineral density in patients with scoliosis of different causes and compare it to the expected values for the age, gender and body mass.

Methods: A Prospective, observational case series. From October 2003 to December 2004, Bone Mineral Density (BMD) of patients with different types of Scoliosis was recorded. Patients listed for corrective spinal surgery in our institute were included in the study (Total of 68 patients). BMD on lumbar spine and whole body was measured by DXA scan and recorded in form of Z-scores. Z-scores = number of Standard Deviations (SD) above or below age matched norms; it is age and gender specific standard deviation scores. Data collected using the same DXA scan equipment and software.

There were 29 patients with Adolescent Idiopathic Scoliosis and 7 patients with congenital or infantile scoliosis. Z-scores from patients with neuromuscular scoliosis also included, 10 patients with cerebral palsy and 11 with muscular dystrophies (mainly Duchenne MD). There were also 3 patients with Neurofbromatosis and 8 patients with other conditions (miscellaneous). Outcome measures were bone mineral density in patients with different types of scoliosis in form of Z-scores.

Results: Bone mineral density was significantly lower than normal for the age, gender and body mass in all patients with neuromuscular scoliosis; whole body z-score in group with cerebral palsy was −1.00 and −1.30 in muscular dystrophies group. Lumbar spine BMD was even lower in lumbar spine, mean z-score, – 4.51 in cerebral palsy and −2.36 in muscular dystrophies (mainly Duchenne MD). In idiopathic Scoliosis group mean BMD was markedly lower than normal for the age, gender and body mass, mean z-score = – 1.87, however whole body BMD was within the normal range, mean z-score = +0.124. Similar results were found in congenital and infantile scoliosis group, mean lumber z-score= – 1.36 and whole body z-score, – 0.30. In patients with neurofibromatosis, there were low BMD on spine, mean z-score was −1.19 while whole body z-score was + 0.19. In group of patients with other miscellaneous causes of scoliosis or syndromic scoliosis lumbar mean z-score= −2.22 and whole body mean z-score was −1.67.

Conclusion: This study showed that BMD on spine was lower than normal for the age, gender and body mass in all patients with scoliosis and the condition was even worse in neuromuscular and sydromic scoliosis. There was no correlation between spine BMD and whole body BMD. Spine BMD was lower than normal in almost all patients even when whole body BMD was within normal range. Thus we believe that DXA scan is a useful adjunct in the preoperative assessment of scoliotic patients prior to spinal surgery.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 250 - 250
1 Nov 2002
Reddy S
Full Access

Osteoporosis, the disease of aging, is a major health problem and its clinical end point: – Fracture is a major cause of mortality and morbidity. Osteoporosis is a silent, relentlessly progressive disease that is best treated by early diagnosis and prevention. To elucidate the predictors of fracture proneness in patients with osteoporosis the following study was undertaken.

32 patients with fractures of the hip and spine due to osteoporosis were studied with a control group of 30 patients with osteoporosis but no fractures. Osteoporosis was established by using the gold standard: Dual Energy X-ray Absorptiometry. Of the biochemical parameters studied lower values of, hemoglobin, total serum proteins & albumin, and alkaline phosphatase were found along with higher values for serum tartarate resistant acid phosphatase, urinary hydroxy proline and acid phosphatase, in the fracture group when compared with the non fracture group. It was inferred that biochemical parameters are reliable indicators of fracture proneness in patients suffering with osteoporosis and also that in the treatment of osteoporosis, anemia and hypoproteinemia must also be considered and corrected.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2008
Shim V Anderson I Rossaak M Streicher R Pitto R
Full Access

In recent years, some attempts have been made to develop a method that generates finite element (FE) models of the femur and pelvis using CT. However, due to the complex bone geometry, most of these methods require an excessive amount of CT radiation dosage. Here we describe a method for generating accurate patient-specific FE models of the total hip using a small number of CT scans in order to reduce radiation exposure.

A previously reported method for autogenerating patient-specific FE models of the femur was extended to include the pelvis. CT osteodensitometry was performed on 3 patients who had hip replacement surgery and patient-specific FE models of the total hip were generated. The pelvis was generated with a new technique that incorporated a mesh morphing method called ‘host mesh fitting’. It used an existing generic mesh and then morphed it to reflect the patient specific geometry. This can be used to morph the whole pelvis, but our patient dataset was limited to the acetabulum. An algorithm was developed that automated all the procedures involved in the fitting process.

Average error between the fitted mesh and patient specific data sets for the femur was less than 1mm. The error for the pelvis was about 2.5mm. This was when a total 18 CT scans with 10mm gap were used – 12 of the femur, and 6 of the pelvis. There was no element distortion and a smooth element surface was achieved.

Previously, we reported a new method for automatically generating a FE model of the femur with as few CT scans as possible. Here we describe a technique that customizes a generic pelvis mesh to patient-specific data sets. Thus we have developed a novel hybrid technique which can generate an accurate FE model of the total hip using significantly less CT scans.

An automated method of generating FE models for the total hip with reduced CT radiation exposure will be a valuable clinical tool for surgeons.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2008
Shim V Anderson I Rossaak M Streicher R Pitto R
Full Access

In recent years, some attempts have been made to develop a method that generates finite element (FE) models of the femur and pelvis using CT. However, due to the complex bone geometry, most of these methods require an excessive amount of CT radiation dosage. Here we describe a method for generating accurate patient-specific FE models of the total hip using a small number of CT scans in order to reduce radiation exposure.

A previously reported method for autogenerating patient-specific FE models of the femur was extended to include the pelvis. CT osteodensitometry was performed on 3 patients who had hip replacement surgery and patient-specific FE models of the total hip were generated. The pelvis was generated with a new technique that incorporated a mesh morphing method called ‘host mesh fitting’. It used an existing generic mesh and then morphed it to reflect the patient specific geometry. This can be used to morph the whole pelvis, but our patient dataset was limited to the acetabulum. An algorithm was developed that automated all the procedures involved in the fitting process.

Average error between the fitted mesh and patient specific data sets for the femur was less than 1mm. The error for the pelvis was about 2.5mm. This was when a total 18 CT scans with 10mm gap were used – 12 of the femur, and 6 of the pelvis. There was no element distortion and a smooth element surface was achieved.

Previously, we reported a new method for automatically generating a FE model of the femur with as few CT scans as possible. Here we describe a technique that customizes a generic pelvis mesh to patient-specific data sets. Thus we have developed a novel hybrid technique which can generate an accurate FE model of the total hip using significantly less CT scans.


Bone & Joint Open
Vol. 6, Issue 3 | Pages 291 - 297
7 Mar 2025
Zambito K Kushchayeva Y Bush A Pisani P Kushchayeva S Peters M Birch N

Aims

Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk.

Methods

The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 46 - 46
17 Nov 2023
Young M Birch N
Full Access

Abstract. Objective. This study assesses the prevalence of major and minor discordance between hip and spine T scores using Radiofrequency Echographic Multi-spectrometry (REMS). REMS is a novel technology that uses ultrasound and radiofrequency analysis to measure bone density and bone fragility at the hip and lumbar spine. The objective was to compare the results with the existing literature on Dual-Energy X-ray Absorptiometry (DEXA) the current “gold standard” for bone densitometry. REMS and DEXA have been shown to have similar diagnostic accuracy, however, REMS has less human input when carrying out the scan, therefore the rates of discordance might be expected to be lower than for DEXA. Discordance poses a risk of misclassification of patients’ bone health status, causing diagnostic ambiguity and potentially sub-optimal management decisions. Reduction of discordance rates therefore has the potential to significantly improve treatment and patient outcomes. Methods. Results from 1,855 patients who underwent REMS investigations between 2018 and 2022 were available. Minor discordance is defined as a difference of one World Health Organisation (WHO) diagnostic classification (Normal / Osteopenia or Osteopenia / Osteoporosis). Major discordance is defined as a difference of two WHO diagnostic classifications (Normal / Osteoporosis). The results were compared with reported DEXA discordance rates. Results. 1,732 individuals had both hip and spine T scores available for analysis. There were 267 cases of discordance. No instances of major discordance were observed. The minor discordance rate was 15.4%. 6.5% of the REMS scans with minor discordance showed > 1.0 standard deviation (SD) difference between the T scores of the hip and spine. 19.4% had differences of between 0.6 SD and 1.0 SD while 73.9% had ≤ 0.5 SD or less. In 24.5% of the cases of REMS discordance the hip T scores were greater than the spine and in 75.5% of cases the spine T score was greater than the hip. Conclusions. The current analysis is the largest of its kind. It demonstrates that REMS has an overall lower rate of discordance than reported DEXA rates. Major discordance rates with DEXA range from 2–17%, but REMS avoids many of the positioning problems and post-processing errors inherent in DEXA scanning, which might account for the absence of major discordance. Rates of minor discordance in DEXA scans range between 38–51%. The REMS minor discordance rate being much lower than these rates suggests that it has the potential to enhance diagnostic accuracy considerably. Most REMS discordance results showed ≤ 0.5 SD variance between the T scores of the two sites, indicating close correlation in the bone densitometry analysis. Most studies of DEXA discordant results confirm that spinal T scores are more often higher than at the hip. The REMS results concur with this observation. Considering the comparable accuracy rates that have been shown between REMS and DEXA, with its much lower discordance rate, REMS can potentially improve current medical practice and enhance patient care. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 29 - 29
1 Jul 2013
Harrison W Harrison D
Full Access

Total disc replacement (TDR) is the gold standard for lumbar degenerative disc disease in selected patient groups. Traditional TDR designs benefit from a wealth of literature and use a polyethylene inlay pseudo-disc between two metal endplates. There is scarce literature for novel monomodular implants that form an artificial construct of woven annulus and central nucleus, providing physiological motion preservation. The aim was to compare the evolving changes to radiological position between monomodular and traditional implants and assess the relationship of migration with bone densitometry. This retrospective series of consecutive patients undergoing TDR under a single surgeon recorded demographics, co-morbidities, previous surgery and clinical outcomes. Measurements of endplate subsidence, lordosis and spondylolisthesis taken from weight-bearing erect x-rays at 0, 3, 6 and 12 months. Radiological outcomes were compared against CT bone densitometry. 33 monomodular and 13 traditional implants. Mean age 40 years. All patients had degenerative disc disease. Monomodular and traditional implants were as likely to develop lordosis (p=0.32), endplate subsidence (p=0.78) or spondylolisthesis (p=0.98). Comparison between endplate subsidence and low bone densitometry were insignificant (p=0.47). Developing lordosis in the monomodular implant was related to low bone density; mean 134vs.184mg/cm. 3. (p=0.018). Three monomodular implants developed a posterior hinge after migrating into lordosis. One traditional implant dislocated, requiring emergency fusion. Radiological outcomes are comparable between traditional and monomodular implants. The larger endplate-footprint of the monomodular implant did reduce subsidence. Monomodular implants pivoting on a posterior hinge may fail early. Bone densitometry may identify patients who will drift into lordosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 84 - 84
1 Mar 2021
Mobasheri A
Full Access

Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or inflammatory disease, including malignancy and organ failure. Physical inactivity is one of the major contributors to the development of sarcopenia, whether due to a sedentary lifestyle or to disease related immobility or disability. Furthermore, sarcopenia can develop as a result of inadequate protein consumption. Biomarkers are objective and quantifiable characteristics of physiological and pathophysiological processes. Biomarkers can be used to predict the development of sarcopenia in older susceptible adults and enable early interventions that can reduce the risk of physical disability, the co-morbidities associated with the loss of muscle mass and the poor health outcomes that result from sarcopenia. Non-invasive imaging technologies can be used as biomarkers to detect loss of skeletal muscle mass in sarcopenia include bone densitometry, computed tomography, ultrasound and magnetic resonance imaging. However, imaging requires sophisticated and expensive equipment that is not available in a resource poor setting. Therefore, markers of skeletal muscle strength and fitness and soluble biochemical markers in blood may be used as alternative biomarkers. Studies on sarcopenia have identified numerous soluble biochemical biomarkers. These biomarkers can be divided into two groups: “muscle-specific” and “non-muscle-specific” biomarkers. Since sarcopenia is associated with rapid skeletal muscle wasting, the skeletal muscle-specific isoform of troponin T may be considerate a useful biomarker of sarcopenia, since high troponin levels in blood are an expression of muscle wasting. Peptides derived from collagen type VI turnover may be potential biomarkers of sarcopenia. We have recently conducted a systematic review to summarize the data from recent mass-spectrometry based proteomic studies of the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress in order to identify the proteins involved in muscle breakdown. Developing robust in vitro models for the study of sarcopenia using primary muscle cells is a high priority as is exploiting the in vitro models to understand catabolic and inflammatory processes and molecular mechanisms involved in sarcopenia. Co-cultures with adipose-derived and other cells may be used to screen for small molecules and biologicals capable of inhibiting the catabolic and inflammatory pathways involved in sarcopenia. This presentation reviews recent progress in this area and outlines opportunities for future research on sarcopenia


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 10 - 10
1 Jan 2011
Purushothaman B Lakshmanan P Rawlings D Patterson P Siddique M
Full Access

There is limited literature available looking into circumstances surrounding the development of stress fracture of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of ankle replacement upon local bone mineral density and the phenomenon of stress shielding. We aimed to assess the effect of ankle replacement loading of the medial and lateral malleoli, by analysing the Bone Mineral Density (BMD) of the medial and lateral malleoli before and after Mobility total ankle replacement. Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 months after surgery. The bone mineral density of a 2 cm square area within the medial malleolus and lateral malleolus was measured. The pre-operative and postoperative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. The mean preoperative BMD within the medial malleolus improved from 0.57g/cm2 to mean 6 months postoperative BMD of 0.62g/cm2. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to a mean 6 months postoperative of 0.33g/cm2. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). However, there was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 311 - 311
1 Jul 2011
Lakshmanan P Purushothaman B Rawlings D Patterson P Siddique M
Full Access

Introduction: There is limited literature available looking into circumstances surrounding the development of stress fracture of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of ankle replacement upon local bone mineral density and the phenomenon of stress shielding. Aim: To assess the effect of ankle replacement loading of the medial and lateral malleoli, by analysing the BMD of the medial and lateral malleoli before and after Mobility total ankle replacement. Methodology: Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 and 12 months after surgery. The bone mineral density of a 2 cm square area within the medial malleolus and lateral malleolus was measured. The pre-operative and post-operative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. Results: The mean preoperative BMD within the medial malleolus improved from 0.58g/cm2 to mean 6 months postoperative BMD of 0.59g/cm2 and 0.60g/cm2 at 12 months. The mean preoperative BMD within the lateral malleolus decreased from 0.40g/cm2 to a mean 6 months postoperative BMD of 0.34g/cm2. However the BMD over the lateral malleolus increased to 0.36g/cm2 at 12 months. The mean alignment of the tibial component was 88.5° varus (85° varus to 94° valgus). There was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). Conclusion: The absence of stress shielding around the medial malleolus indicates that TAR implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 360 - 360
1 May 2009
Purushothaman B Lakshmanan P Rowlings D Patterson P Siddique M
Full Access

Introduction: There is limited literature available looking into circumstances surrounding the development of stress fracture of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of ankle replacement upon local bone mineral density and the phenomenon of stress shielding. Aim: To assess the effect of ankle replacement loading of the medial and lateral malleoli, by analysing the BMD of the medial and lateral malleoli before and after Mobility total ankle replacement. Methodology: Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 months after surgery. The bone mineral density of a 2 cm square area within the medial malleolus and lateral malleolus was measured. The pre-operative and post-operative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. Results: The mean preoperative BMD within the medial malleolus improved from 0.57g/cm2 to mean 6 months postoperative BMD of 0.62g/cm2. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to a mean 6 months postoperative BMD of 0.33g/cm2. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). However, there was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). Conclusion: The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 240 - 240
1 Mar 2010
Lakshmanan P Purushothaman B Rowlings D Patterson P
Full Access

Introduction: There is limited literature looking into the circumstances surrounding the development of stress fractures of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of total ankle replacement (TAR) upon local bone mineral density (BMD) and the phenomenon of stress shielding. Aim: To assess the effect of TAR loading othe medial and lateral malleoli, by analysing the BMD of the medial and lateral malleoli before and after Mobility TAR. Methodology: Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 and 12 months after surgery. The bone mineral density of a 2 cm square area within the medial and lateral malleoli was measured. The pre-operative and post-operative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. Results: The mean preoperative BMD within the medial malleolus increased from a mean of 0.57g/cm2 to 0.58g/cm2 at six months and 0.60g/cm2 at 12 months postoperatively. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to 0.34g/cm2 at six months postoperatively. However the BMD over the lateral malleolus increased to 0.356g/cm2 at 12 months. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). There was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). Conclusion: The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Introduction: There is a clear need for the development of more sensitive risk assessment tools for clinical predictors of fractures. Bone densitometries are limited in the ability to account for complex geometry, architecture, and heterogeneity of bone. Quantitative computed tomography (QCT)-based finite element (FE) Methods: (QCT/FEM) are able to perform structural analyses taking these factors into consideration to accurately predict bone strength. However, no basic data have been available regarding predicted strength (PS) of the proximal femur by QCT/FEM with reference to age in a normal population. The purpose of this study was thus to create a database on PS in a normal population as a preliminary trial. With these data, parameters that affect PS were also analyzed. Methods: Participants in this study comprised individuals who participated in a health checkup program with computed tomography (CT) at our hospital in 2008. Participants included 487 men and 237 women (age range, 40–87 years). Exclusion criteria were provided. Scan data of the proximal femur were isolated and taken from overall data from CT of each participant with simultaneous scans of a calibration phantom containing hydroxyapatite rods. A FE model was constructed from the isolated data using Mechanical Finder software. For each of the FE models, loading and boundary conditions as well as the definition of PS were exactly the same as described by Bessho et al. (Bone 2009). For each participant, height, weight, and abdominal circumference (AC) were measured. The analyses included linear regression analysis relating age and PS, one-way analysis of variance to compare average PS among the groups of participants who were divided into 5-year age brackets, and multiple regression analysis to determine how PS was affected by age, height, weight, and AC. Differences were considered significant for values of p< 0.05. Result: The following results were obtained. First, average PS was lower in women than in men for all age ranges. Second, PS in men under stance configuration, and those in women under stance and fall configurations significantly decreased with age. Third, weight positively affected PS in both men and women. Discussion: This was the first study to investigate changes in PS with age in a normal population. Whether PS by QCT/FEM correlates more closely with fracture risk for osteoporotic patients in comparison to other bone densitometries remains unclear, but the our results did not contradict any existing concept of risk factors for fragility fracture. More baseline data for PS in normal populations need to be accumulated by increasing the number of participants in studies like this


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 105 - 105
1 Mar 2010
Kim Y Kim J
Full Access

Architectural changes in occurring in the proximal femur (resorption) after total hip arthroplasty (due to stress shielding) continues to be a problem. In an attempt to reduce these bony changes the concept of short and femoral neck sparing stem designs have been advocated. The purpose of this study was to evaluate the early clinical and radiological results, especially stem fixation and bone remodeling of proximal femur after total hip arthroplasty. A total of forty-five patients (fifty-four hips) were included in the study. There were twenty men and twenty-five women. The mean age at the time of operation was 53.9 years (range, twenty-six to seventy-five years). Clinical and radiological evaluation were performed at each follow-up. Bone densitometry was carried out on all patients one week after operation and at the final follow-up examination. The mean follow-up was 1.3 years (range, one to two years). The mean preoperative Harris hip score was 45 points (range, 15 to 48 points), which improved to a mean of 96 points (range, 85 to 100 points) at the final follow-up. No patient complained of thigh pain at any stage. No acetabular or femoral osteolysis was observed and no hip required revision for aseptic loosening of either component. One hip (2%) required open reduction and fixation with a cable for calcar femorale fracture. Bone mineral densitometry revealed a minimal bone remodeling in the acetbulum and proximal femur. The geometry of this ultra-short anatomic neck sparing cementless femoral stem has proved to provide effective initial stability even without the diaphyseal portion of the stem. We believe that femoral neck preservation and lateral flare of the stem provide an axial and torsional stability and more natural loading of the proximal femur


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 20 - 20
1 Jun 2018
Springer B
Full Access

Periprosthetic fractures around the femur during and after total hip arthroplasty (THA) remain a common mode of failure. It is important therefore to recognise those factors that place patients at increased risk for development of this complication. Prevention of this complication, always trumps treatment. Risk factors can be stratified into: 1. Patient related factors; 2. Host bone and anatomical considerations; 3. Procedural related factors; and 4. Implant related factors. Patient Factors. There are several patient related factors that place patients at risk for development of a periprosthetic fracture during and after total hip arthroplasty. Metabolic bone disease, particularly osteoporosis increases the risk of periprosthetic fracture. In addition, patients that smoke, have long term steroid use or disuse, osteopenia due to inactivity should be identified. A metabolic bone work up and evaluation of bone mineralization with a bone densitometry test can be helpful in identifying and implementing treatment prior to THA. Pre-operative Host Bone and Anatomic Considerations. In addition to metabolic bone disease the “shape of the bone” should be taken into consideration as well. Dorr has described three different types of bone morphology (Dorr A, B, C), each with unique characteristics of size and shape. It is important to recognise that not one single cementless implant may fit all bone types. The importance of templating a THA prior to surgery cannot be overstated. Stem morphology must be appropriately matched to patient anatomy. Today, several types of cementless stem designs exist with differing shape and areas of fixation. It is important to understand via pre-operative templating which stem works best in what situation. Procedural Related Factors. There has been a resurgence in interest in the varying surgical approaches to THA. While the validity and benefits of each surgical approach remains a point of debate, each approach carries with it its own set of risks. Several studies have demonstrated increased risk of periprosthetic fractures during THA with the use of the direct anterior approach. Risk factors for increased risk of periprosthetic fracture may include obesity, bone quality and stem design. Implant Related Factors. As mentioned there are several varying cementless implant shapes and sizes that can be utilised. There is no question that cementless fixation remains the most common mode of fixation in THA. However, one must not forget the role of cemented fixation in THA. Published results on long term fixation with cemented stems are comparable if not exceeding those of press fit fixation. In addition, the literature is clear that cemented fixation in the elderly hip fracture patient population is associated with a lower risk of periprosthetic fracture and lower risk of revision. The indication and principles of cemented stem fixation in THA should not be forgotten


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 54 - 54
1 Dec 2020
Kacmaz IE Egeli E Basa CD Zhamilov V
Full Access

Proximal femur fractures are common in the elderly population. The aim of this study was to determine the relationship between fracture type and proximal femoral geometric parameters. We retrospectively studied the electronic medical records of 85 elderly patients over 60 years of age who were admitted to the orthopedic department with hip fractures between January 2016 and January 2018 in a training and research hospital in Turkey. Age, fracture site, gender, implant type and proximal femoral geometry parameters (neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Patients with femoral neck fractures and femur intertrochanteric fractures were divided into two groups. The relationship between proximal femoral geometric parameters and fracture types was examined. SPSS 25.0 (IBM Corparation, Armonk, New York, United States) program was used to analyze the variables. Independent samples t test was used to compare the fracture types according to NSA, FHD, FND and FSD variables. A statistically significant difference was found in FSD (p=0,002) and age (p=0,019). FSD and age were found to be greater in intertrochanteric fractures than neck fractures. Gender, site, CEA, FNAL, HAL, NSA, FHD and FND parametres were not significantly different. In the literature, it is seen that different results have been reached in different studies. In a study conducted in the Chinese population, a significant difference was found between the two groups in NSA, CEA and FNAL measurements. In a study conducted in the Korean population, a significant difference was found only in NSA measurements. The FSD is generally associated with bone mineral densitometry in the literature and has been shown to be a risk factor for fracture formation. However, a study showing that there is a relationship between FSD and fracture type is not available in the literature. In this study; FSD was found to be higher in intertrochanteric fractures (p = 0.002). However, for the clinical significance of this difference, we think that larger patient series and biomechanical studies are needed


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 260 - 260
1 May 2006
Kitson J Booth G Day R
Full Access

The aim of this study was to determine the biomechanical behavior of two different implants used in the fixation of proximal humerus fractures. The two implants in this study are specifically designed for the fixation of proximal humerus fractures and both utilize the concept of fixed angle locking screws. Bone densitometry was performed prior to fracture production and fixation. A reproducible three-part fracture was created in paired human cadaveric bone and then fixed using the locking screw implants. Stress/strain curves for the bone-implant construct were created for loads applied in cantilever bending and torsion to determine the relative stiffness below the yield point. Following this each construct was tested to failure with a valgus bending load. The locking nail implant provided a significantly stiffer construct in torsion, valgus, extension and flexion at loads below failure threshold. The valgus load to failure was significantly higher for the nail. The mode of failure was different between implants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIII | Pages 52 - 52
1 Sep 2012
Al-Maiyah M Rawlings D Chuter G Ramaskandhan J Siddique M
Full Access

Introduction. There is no published series described change in bone mineral density (BMD) after ankle replacement. We present the results of a prospective study examining the effect of total ankle replacement (TAR) upon local bone mineral density (BMD). Aim. To design a method and assess the effect of TAR loading on local ankle bones, by analysing the BMD of different area around ankle before and after Mobility TAR. Methods. 23 patients undergoing Mobility ankle arthroplasty for osteoarthritis had preoperative bone densitometry scans of the ankle, repeated at 1 and 2 years after surgery. BMD of 2 cm. 2. areas around ankle were measured. Pre- and postoperative data were compared. Results: Mean BMD within the lateral malleolus decreased significantly from 0.5g/cm. 2. to 0.42g/cm. 2. (17%, P > 0.01), at 1 & 2 years postoperatively. Mean BMD within medial malleolus decreased slightly from 0.67g/cm. 2. to 0.64 g/cm. 2. at the same period. However BMD at medial side metaphysic of tibia increased by 7%. There was little increase in BMD in tibia just proximal to implant and at talus. Discussion and Conclusion. Absence of stress shielding around distal tibia, just proximal to tibial component and talus indicates that ankle replacements implanted within the accepted limits for implant alignment, load distal tibia and talus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in lateral malleolus. Increase BMD at tibial metaphysis, proximal to medial malleolus indicates an increase in mechanical stress which may explain occasional postoperative stress fracture of medial malleolus or medial side ankle pain


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 17 - 17
1 Feb 2012
Hanusch B Fordham J Gregg P
Full Access

Introduction. The purpose of this study was to establish whether men and women with a fragility hip fracture were equally investigated and treated for osteoporosis. Methods. A retrospective review was carried out including 91 patients (48 females, 43 males) who were admitted with a fragility hip fracture between March 2003 and April 2004. Data about age, sex, investigations and medication were collected from the case notes, GP surgeries and the bone densitometry database. Investigations and treatment were compared with current guideline recommendations (SIGN 2003, NICE 2005). Data were analysed using SPSS Version 13.0. Results. According to the guidelines patients < 75 years of age should be investigated and patients > 75 years should be treated for osteoporosis. In our review 33% of women and only 8% of men < 75 years were investigated with a DEXA scan following their hip fracture (Fishers Exact Test, p = 0.32). In patients > 75 years 25% of women and only 6% of men were treated with bisphosphonates (Chi-square = 4.18, p < 0.05). There was also a statistically significant difference in overall treatment including bisphosphonates and calcium/vitamin D between the sexes (Chi-square = 6.81, p < 0.05). Conclusion. This study shows that there is clearly a need for improvement in secondary prevention of fragility fractures in both sexes, but men are significantly less likely to be investigated and treated than women. It is important to include recommendations for men in future guidelines and increase the awareness of male osteoporosis. This is of particular importance as men have a higher morbidity and mortality following hip fractures than women. Orthopaedic surgeons should therefore take on responsibility for these fracture patients and ensure that the process of secondary prevention is initiated